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CHAPTER 1 
Introduction 

 
1.1 Purpose.  This document is intended to serve as a guide to project team members for the 
use of statistics in environmental decision-making. 
 
1.2 Applicability.  The U.S. Army Corps of Engineers (USACE) developed this document 
within the broader scope of Technical Project Planning (TPP), recognizing that understanding 
statistical evaluations can improve project planning and implementation at hazardous, toxic, and 
radioactive waste (HTRW) sites. 
 
1.3 Distribution Statement. Approved for public release; distribution unlimited. 
 
1.4 References.  References are contained in Appendix A. 
 
1.5 Introduction.  This Manual’s primary objective is to improve a decision-maker’s under-
standing of common environmental statistical evaluations. The applicability of statistical tests 
and considerations is presented in the context of a typical environmental project life cycle. This 
document should serve as a first step in explaining statistical concepts and their application at 
HTRW sites. It is not intended to replace more robust statistical texts or electronic statistical 
software. 
 
 1.5.1  Statistics are applicable to environmental projects throughout their entire life cycle 
and yield defensible, cost-effective solutions to environmental questions. Statistics can be used to 
guide the selection of sampling locations, analyze large data sets, and verify that project objec-
tives have been met. Statistics are of particular importance for quantifying the power and limita-
tions of environmental data, specifically because these data are usually limited. It is not possible 
to collect and analyze every bit of an environmental medium (for example, soil, sediment, 
groundwater, or surface water) at a site; instead, a set of sample data is used to characterize the 
environmental medium as a whole. 
 
 1.5.2  This Manual is organized into four major Chapters, each associated with a stage in 
a typical Superfund project life cycle. These Chapters are supported by Appendices that provide 
detailed statistical or technical explanations of concepts or techniques used within the main sec-
tions.  
 
 1.5.3  The document is organized as follows: 
 

Chapter 1 Introduction  
Chapter 2 Preliminary Assessment (PA)/Site Investigation (SI) 
Chapter 3 Remedial Investigation/Feasibility Study (RI/FS) 
Chapter 4 Remedial Design (RD)/Remedial Action (RA) 



EM 1110-1-4014 
15 Jan 07 
 

1-2 

Appendix A References 
Appendix B Statistical Tables 
Appendix C Sampling Strategies 
Appendix D Descriptive Statistics 
Appendix E Assumptions of Distribution 
Appendix F Testing for Normality 
Appendix G Detection Limits and Quantitation Limits 
Appendix H Censored Data 
Appendix I Identification and Handling of Outliers 
Appendix J Graphical Tools 
Appendix K Intervals and Limits 
Appendix L Hypothesis Testing—Simple Cases 
Appendix M Hypothesis Testing—Two-Population and General Cases 
Appendix N Hypothesis Testing—Tests of Dispersion 
Appendix O Measures of Correlation 
Appendix P Comparing Laboratory and Field Data 
Appendix Q Trend Analysis 
Appendix R Geostatistics 
Appendix S Geochemical Trend Analysis 
Glossary 

 
 1.5.4  Statistical terms unfamiliar to some readers may be used in the four main chapters. 
When used for the first time, these terms will be printed in italics and footnoted. The footnote 
will direct the reader to the appropriate Appendix for a detailed explanation of the term. To dem-
onstrate the types of statistical concepts necessary for the planning stages of environmental pro-
jects, concepts are presented in the context of Comprehensive Emergency Response, 
Compensation, and Liability Act (CERCLA) projects. The material is applicable to Resource 
Conservation and Recovery Act (RCRA) projects as well. The steps involved in the two pro-
grams are similar except for the use of different terminology and the applicable regulations. Ta-
ble 1-1 presents a terminology crosswalk for the stages of CERCLA and RCRA investigations. 
 
 1.5.5  In the following Chapters of this document, major stages that require data gather-
ing and evaluation are presented, and to the extent that statistical processes are applicable, exam-
ples are provided from case studies illustrating the application of those statistical processes. 
Some statistical elements may apply in more than one phase of the project life cycle. The Ap-
pendices provide detailed instructions on implementing the statistical processes. 
 
 1.5.6  The CERCLA project life cycle is not always linear. As information regarding a 
given site is gathered, additional questions may be raised about a previously unrecognized threat 
to human health or the environment. In that case, the process can repeat in whole or in part, cre-
ating a series of loops to previous portions of the cycle. In addition, at any point in the process, 
emergency activities (e.g., “time critical” remedial actions) may occur at earlier or later times in 
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the cycle. Finally, the process can terminate at the end of any given phase in a “no further action” 
determination. 
 
Table 1-1 
Project Phase Crosswalk between CERCLA and RCRA 

CERCLA Project Phase RCRA Project Phase 
Discovery and Notification Permit Application 
Preliminary Assessment RCRA Facility Assessment 
Site Investigation Site Inspection 
Hazard Ranking  Administrative Order  
Remedial Investigation RCRA Facility Investigation 
Feasibility Study Corrective Measures Study 
Proposed Plan Statement of Basis 
Record of Decision RCRA Permit 
Remedial Design Remedy Design 
Remedial Action Corrective Measures Implementation 
Five Year Review Monitoring/Annual Report 
Closeout Closure 

 
 1.5.7  The remedial action process under CERCLA is necessarily iterative and the same 
statistical tools can be employed repeatedly to address the original problem or newly identified 
issues at the site. For purposes of this text, however, we will assume a linear progression through 
an idealized project life cycle. Consistent with the instructions contained in EM 200-1-2. 
 
 1.5.8  In the Technical Project Planning Process, the user is encouraged to identify the 
appropriate project phase for a given segment of work, then reference matching portions of this 
Manual for statistical guidance and methods appropriate to that phase. 
 
1.6 Technical Project Planning and the Project Life Cycle.  EPA QA/G-4 states, “EPA 
Order 5360.1 A2 [requires that] all EPA organizations (and organizations with extramural 
agreements with EPA) follow a systematic planning process to develop acceptance or perform-
ance criteria for the collection, evaluation, or use of environmental data.” Similarly, ER 5-1-11 
states, “Requirements for quality must be addressed during the planning phase of a project’s life 
cycle, rather than waiting until the review or inspection stage.” Thus, a systematic planning 
process of some sort is required for all HTRW projects involving the collection of data. 
 
 1.6.1  The EPA approach to systematic planning is described in detail in EPA QA/G-4 
and is called the Data Quality Objectives (DQO) process. It is a seven-step process, which has as 
its goal the design of legally and scientifically defensible sampling strategies. The DQO guid-
ance generally assumes that decision-making requires a probabilistic approach. Fundamental to 
the DQO process is identifying some statistic describing an environmental site that is compared 
via a statistical process to either a fixed threshold or risk-based value, or a statistical comparison 
of some descriptive measure of data for two or more variables. The DQO process also incorpo-
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rates statistical tools for estimating such things as the number of samples required to measure a 
site characteristic, spacing of sampling locations, and frequency of sampling. This permits data 
users to make decisions with specific degrees of statistical confidence. 
 
 1.6.2  The USACE TPP process is broader in scope, with the EPA’s DQO process as one 
step within it, to the extent that probabilistic decision-making is appropriate to the goals of the 
project. The intent of the TPP process is to “get to closure” and to provide documentation of 
project decisions and project performance. The TPP process is useful for all sites, regardless of 
whether probabilistic decision-making is involved. It is highly flexible and promotes an approach 
that balances the size and complexity of a given site or problem with the level of effort involved 
in the planning process. 
 
 1.6.3  As described in EM 200-1-2, there are four phases to the TPP process, as follows. 
 
 1.6.3.1  Identify the Current Project Phase.  The project manager establishes a project 
team to encompass all of the perspectives and skills required to take the project from beginning 
to end. The project manager briefs the team on client goals and existing site information and de-
velops a conceptual model for the site. A broad, overall approach to the work is agreed upon, in-
cluding an assessment of the most likely remedies or outcomes for the site. The work is broken 
down into clearly defined executable stages and the current stage of work is identified. 
 
 1.6.3.2  Determine Data Needs.  Allowing all perspectives to be addressed, the team 
identifies the data required for each data user type (e.g., hydrogeologic, chemical, health and 
safety, risk assessment, engineering, etc.). The team reviews sources of existing information for 
availability, quality, and applicability to the current stage of work, and identifies data gaps that 
only new data can fill. 
 
 1.6.3.3  Develop Data Collection Options.  With their respective needs defined, the team 
members decide on the best approach to obtain the required data. Usually, the team assesses a 
number of differing approaches and selects the approach that provides all of the requisite data 
with the best balance of available resources, measurement quality, and client risk tolerance. The 
TPP process clearly defines three data collection options: basic, optimum, and excessive. A basic 
sampling approach provides data applicable only to the current stage of work, whereas an opti-
mum approach addresses both current data needs and anticipated future needs as well. An ap-
proach not focused on the specific data required to “get to closure” is excessive and should be 
avoided. 
 
 1.6.3.4  Finalize the Data Collection Program.  At this point, the team encourages cli-
ents, regulators, the public, and in some cases other parties, to take part in the decision-making 
process. Specific DQO statements are prepared for each data user and data type and, to the extent 
that probabilistic decision-making is appropriate, the EPA’s DQO guidance document (EPA 
QA/G-4) is used and applied to these statements. From these DQO statements, scopes of work 
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and other project controlling documents (PCDs) such as work plans, quality assurance 
(QA)/quality control (QC) plans, field sampling plans (FSPs), etc., are derived and cost estimates 
generated. 
 
 1.6.4  Table 1-2 provides a crosswalk between the EPA DQO Process and the USACE 
TPP process. 
 
Table 1-2 
Crosswalk Between the TPP and DQO Processes 

USACE TPP Process 
     

EPA's DQO Process    Phase I Phase II Phase III Phase IV 
Step 1 

State the Problem  Develop Data 
Collection Options 

Finalize Data Col-
lection Program 

Step 2 
Identify the Decision  

Identify the 
Current Project    

Step 3 
Identify Inputs to the Decision     

Step 4 
Define the Study Boundaries     

Step 5 
Develop a Decision Rule  Identify the 

Current Project   

Step 6 
Specify Limits on Decision Error   

Determine Data 
Needs 

  

Develop Data 
Collection Options 

Step 7 
Optimize the Design       

  
Finalize Data Col-
lection Program 

 
 1.6.5  Failure to apply, or to apply properly, the TPP process can result in a variety of 
negative consequences. Failure to properly plan for data collection may require more time and 
money to implement the work. Lack of planning may extend the time it takes to validate work 
because both objectives and verification methods may be unclear. Poor planning may create the 
need for extensive rework or remobilization. Finally, lack of advance planning can cause in-
creases in legal risk to the client and to the USACE by increasing the potential for decision error. 
On the other hand, too great an emphasis on planning extends the planning cycle and the check-
ing cycle, depleting the available resources. 
 
1.7 Data Quality Objectives, Data Quality Indicators, and Measurement Quality Objec-
tives.  This paragraph provides a conceptual understanding of DQOs in the context of project 
planning for environmental investigations and remediations. The terminology is less important 
than the underlying concepts that support the decision-making process, as long as all parties pos-
sess a common understanding of that process. Project planners derive DQOs from scientific ob-
jectives, as well as social and economic objectives and the regulatory objectives of the 
environmental program under which the project is implemented. DQOs are technical, goal-
oriented, qualitative, and quantitative statements derived from the planning process that clarify 
study objectives, define the appropriate type of data, and specify tolerable levels of potential de-
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cision error. The DQO process typically uses statistics and is the basis for establishing the quality 
and quantity of data needed to support decisions. The DQO process does not establish specifica-
tions for data quality—called measurement quality objectives (MQOs)—or the mechanisms for 
measuring conformance to those specifications—called data quality indicators (DQIs). MQOs 
and DQIs are discussed in additional detail below. 
 
 1.7.1  Data Quality.  Data quality depends on the integrity of each element in a series of 
events. It is critical to collect samples that are representative of the features of the environmental 
population being investigated in the study area. Representativeness depends on factors such as 
sample frequency, location, time of collection, and the nature of the sampled medium. Pre-
testing factors include sample containerization, preservation, transportation, and storage. Sample 
analysis factors generally include sample homogenization, sub-sampling, sample preparation 
(such as extraction and cleanup), as well as the instrumental analysis of the sample. The final 
steps of the process include data generation, reduction, and review. 
 
 1.7.1.1  Historically, attention has been focused primarily on the analytical component of 
data quality rather than on “total measurement system quality.” Environmental decision-makers 
and practitioners tend to assume that data quality is primarily determined by the analytical meth-
odology. For example, as fixed laboratory methods tend to be superior to field methods in terms 
of analytical uncertainty, data produced from field methods have been viewed to be too uncertain 
to support critical project decisions. However, defensible decisions are possible only when data 
quality encompasses total uncertainty rather than the uncertainty associated with only the ana-
lytical portion of the investigation. The value of data is limited less by the analytical procedures 
than by the quality of the sampling design* and the inherent variability of the environmental 
population of interest or condition being measured (the “field” component of variability). Be-
cause analytical uncertainty is typically small relative to field uncertainty, data quality usually 
depends more on sampling design than the quality of the individual test methods. 
 
 1.7.1.2  Table 1-3 summarizes sources or components of variability for environmental 
studies and how they are measured and controlled.  
 
 1.7.1.3  Regulators have also historically insisted on adhering to pre-approved analytical 
methods because of a perception that this ensures defensible data and that definitive data will be 
produced when EPA-approved analytical methods and QA/QC requirements are used. Though 
adequate data quality is often achieved using EPA-approved analytical methods, they are insuffi-
cient to ensure data of high quality. Efforts to improve data quality have primarily focused upon 
increasing laboratory oversight, rather than on developing mechanisms to manage the largest 
sources of uncertainty in data, which are issues related to sampling. Furthermore, prescriptive 
methods are scientifically feasible only when the sample matrices do not vary in any manner that 
will affect the reliability of the analyses. As all analytical methods are potentially subject to 
                                                 
* Appendix C. 



EM 1110-1-4014 
15 Jan 07 

 

1-7 

chemical and physical interferences, given the variability and complexity of environmental ma-
trices, it is unlikely that “one-size-fits-all” analytical methodologies are viable for all projects.  
 
Table 1-3 
Variability in Environmental Studies 

Source of Variability Measurement Method Control Methods 
Analytical Variability 

Analytical instrumentation Replicate measurements of instru-
mental standards (most common for 
inorganic analysis) 

Regular preventive maintenance 

Analytical method Duplicate analytical spikes, lab-
blind field duplicate samples 

Use of standard methods docu-
mented as standard operating proce-
dures; control of standards and 
reagents; control of instrument con-
ditions 

Sample preparation method Duplicate control samples and 
matrix spike/matrix spike duplicates 

Use of standard methods docu-
mented as standard operating 
procedures; control of standards and 
reagents; regular, close supervision 

Analyst Analyst demonstration of capability, 
blank spikes/performance evaluation 
(PE) samples 

Inter-laboratory comparison studies; 
internal PE and auditing programs; 
analyst training; regular, close 
supervision 

Field Variability 
Sampling equipment Field blanks Routine inspection and preventive 

maintenance; decontamination; se-
lection of appropriate equipment for 
representative samples 

Sampling method Method-specific standard deviation 
of field duplicate results 

Selection of appropriate methods for 
representative samples 

Sampler Inter- and intra sampler standard 
deviation of field replicate results 

Independent auditing program; 
training; regular, close supervision 

Matrix heterogeneity Field duplicates or replicates, matrix 
specific standard deviation of field 
replicates, matrix spike duplicates 

Effective field mixing of sample 
components; compositing 

Sample selection Site-wide or stratum-specific stan-
dard deviation of field replicate 
results 

Representative sampling plan; suffi-
cient number of samples; statisti-
cally-based sampling design 

Note: Duplicates are separate aliquots of the same sample; replicates are a second sample from the same loca-
tion. 

 
 1.7.1.4  The EPA has recently clarified its intended meaning of the term “data quality” in 
its broadest sense by defining it as “the totality of features and characteristics of data that bear on 
its ability to meet the stated or implied needs and expectations of the client.” One must know 
how a data set is to be used to establish a relevant benchmark for judging whether the data qual-
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ity is adequate. Linking data quality directly to their intended use provides a firm foundation for 
building a vocabulary that distinguishes the individual components of overall data quality. 
 
 1.7.2  Data Quality Indicators.  DQIs are qualitative and quantitative descriptions of data 
quality attributes: the various properties of analytical data historically expressed as precision, ac-
curacy, representativeness, comparability, and completeness. Collectively, these factors are 
called the PARCC parameters. These are discussed in detail in EPA guidance documentation. 
Because it is evaluated at the same time, an additional parameter often combined with the 
PARCC parameters is sensitivity, which is the ability of an analytical method or technology to 
reliably identify a compound in the sample medium. 
 
 1.7.2.1  Precision, accuracy, and sensitivity are quantitative properties of data directly 
measured through an appropriate analytical QC program. Representativeness is primarily a 
qualitative data quality indicator that is a function of the adequacy of the sampling design (for 
example, the number of samples and the manner in which samples were collected). Representa-
tiveness, in the context of an analytical measurement, can be inferred by examining factors such 
as duplicates/replicates, blanks, and sample collection procedures. Comparability is a qualitative 
measure that is critically important when hypothesis testing* involves comparing different 
populations, disparate in either space or time. 
 
 1.7.2.2  Completeness has been assigned an arbitrary goal of 80 to 100% based on the 
premise that decisions are still possible if a limited portion of the data are discarded (for exam-
ple, because of quality control problems). However, the goal is based primarily on practical ex-
perience and is not mathematically based. Completeness should be evaluated in the context of 
project objectives.  
 
 1.7.2.3  In addition to these, selectivity is also a data quality indicator. “Selectivity” is the 
ability of an analytical method to identify the analyte of concern, e.g., the existence of other 
analytes in a sample or other interferences may mask the presence of the target analyte. 
 
 1.7.2.4  There may be more than one DQI for a single data quality attribute. For example, 
sensitivity is generally thought of in terms of detection, quantitation, or reporting limits, i.e., the 
lowest value that an analytical method can reliably detect or report. However, another important 
element of sensitivity is discrimination, the ability to distinguish between values to a given de-
gree of precision. In other words, can the method tell the difference between values of 1 and 2 
units, or only differences between 10 and 20 units? When developing DQIs, it is important to 
define them in terms of all the important attributes and assign specific numeric values to them as 
often as practicable. 
 

                                                 
* Appendices O and P. 
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 1.7.3  Measurement Quality Objectives.  MQOs are project-specific values assigned to 
DQIs derived from project-specific DQOs. MQOs are acceptance criteria for the DQIs and are 
derived by considering the level of measurement system performance needed to actually achieve 
project goals. MQOs are not intended to be technology- or method-specific. As with DQOs, 
MQOs specify what the level of data performance should be, but not how that level of data per-
formance is to be achieved. A large part of the variability in environmental data stems from sam-
pling considerations. MQOs should balance the relative contributions from analytical 
uncertainties and from sampling uncertainties. In many environmental media, matrix heteroge-
neity causes sampling variability to overwhelm analytical variability. Historically, the term 
MQO was restricted to the analytical side of the measurement process, but the broader concept of 
DQO (or decision confidence objectives) requires that sampling considerations be included. The 
importance of including both the sampling and analytical component of MQOs when assessing 
overall data quality cannot be overemphasized. 
 
 1.7.4  Relationships Among Decision Goals, DQOs, MQOs, and QC Protocols.  During 
project planning, there should be a logical conceptual progression in the development of decision 
goals, DQOs, MQOs, and QC acceptance criteria. However, in practice, this will be a non-linear 
process.  
 
 1.7.4.1  As project planning develops, the following should be clearly presented: 
 
 1.7.4.1.1  General decision goals. 
 
 1.7.4.1.2  Technically expressed project goals (DQOs), and decision rules that will guide 
project decision-making. 
 
 1.7.4.1.3  Tolerable uncertainties for decisions. 
 
 1.7.4.1.4  Uncertainties that create decision errors. 
 
 1.7.4.1.5  Strategies for managing the uncertainties to achieve the desired tolerances for 
decision errors. 
 
 1.7.4.2  In the beginning of the project, program managers often set broad, non-technical 
goals. The next step is to translate these broad, non-technical goals into more technically oriented 
goals that can address specific considerations such as the following. 
 
 1.7.4.2.1  Regulations—what are the applicable environmental regulations? 
 
 1.7.4.2.2  Confidence in the outcome—how certain do we need to be by the end of the 
project that we have achieved goals such as risk reduction or regulatory compliance? 
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 1.7.4.2.3  What are the constraints that need to be accommodated? 
 
 1.7.4.3  The next level of technical detail for data collection involves identifying DQIs 
and assigning to them project-specific MQOs that will be needed to achieve the project DQOs. 
At this point, the project team begins to consider in detail the options available for acquiring the 
needed measurements and selecting those that best meet the needs of the program. These deci-
sions are documented in sampling and QC plans that specify the controls that will be used to en-
sure that MQOs are met and that any deviations are appropriately addressed. 
 
 1.7.4.4  Because sampling design and analytical strategy interact to influence the statisti-
cal confidence in final decisions, interaction among a statistician, a sampling expert, and an 
analytical chemist is critical for selecting a final strategy that can achieve project goals cost-
effectively. The statistician is concerned with managing the overall variability of data, and with 
interpreting data with respect to the decisions being made. A statistician is a person having ade-
quate familiarity with statistical concepts to correctly apply the required tests; this does not nec-
essarily require a degree in statistics. The field sampling expert is responsible for implementing 
the sampling design while managing contributions to the sampling variability as actual sample 
locations are selected and as specimens are collected. The chemist is responsible for managing 
components of variability that stem from the analytical effort. 
 
 1.7.4.5  In summary, the conceptual progression starts with the project-specific decision 
goals, and then moves from broader, higher-level goals to narrow, more technically detailed ar-
ticulations of data quality needs. Project decisions are translated into project-specific DQOs; then 
into project-specific MQOs; then into technology/method selection and development of a 
method-specific QC protocol that blends QA/QC needs of the technology with the QA/QC needs 
of the project. Then the process reverses. The data must be assessed against the project MQOs to 
document that data quality meets the decision-making needs of the project. 
 
 1.7.4.6  Figure 1-1 presents the life cycle in project planning. Figure 1-2 illustrates which 
guidance documents are useful in the planning phases of a project. 
 
1.8 Statistics in Environmental Project Planning.  The number of individual samples 
collected during a given study is called sample size and is generally designated by the statistic n. 
In order for decisions based on that sample to be meaningful in any scientific sense, the sample 
size has to be sufficiently large to account for the inherent variability in the characteristics 
measured. Sample size should be dependent on the variability in the measured condition but, in 
practice, is often limited by available resources. 
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Figure 1-1.  Project planning life cycle. 
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Figure 1-2.  Guidance document life cycle.  
 
 1.8.1  A hypothetical illustration may be helpful in understanding this relationship. Let us 
suppose that a researcher wants to know the average concentration of a particular chemical con-
stituent in the air of a sealed room. The constituent of interest is initially absent from the room 
and the researcher releases the chemical into the room from a port in the north wall of the room. 
Immediately after opening the port, a measurement taken along the south wall will not detect the 
presence of the chemical, while a sample taken adjacent to the port will display a high concen-
tration. As the chemical disperses throughout the room via various physical processes, a single 
sample taken at any location in the room will not provide a representative value for the average 
concentration in the room as a whole. Even if a single sample were collected some time well af-
ter the release of the gas (i.e., after an equilibrium state of dispersion has been achieved), de-
pending upon the physical characteristics of the chemical and the room, it may not be uniformly 
spread throughout the room. Thus, a sample taken at any single randomly selected location will 
not give a representative result for the room as a whole, or even necessarily a good approxima-
tion. 
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 1.8.2  Only when the chemical is uniformly dispersed throughout the three dimensions of 
the room, and is held static in that condition, can a representative result be arrived at from a sin-
gle sample. The analytical error or measurement uncertainty would also need to be negligible 
when analyzing the one sample. In all other cases, the true population mean (μ)* (the real aver-
age concentration for the room as a whole) must be approximated by averaging the results from a 
number of samples.  
 
 1.8.3  Only when the chemical is uniformly dispersed throughout the three dimensions of 
the room, and is held static in that condition, can a representative result be arrived at from a sin-
gle sample. The analytical error or measurement uncertainty would also need to be negligible 
when analyzing the one sample. In all other cases, the population mean (μ)† (the true average 
concentration for the room as a whole) must be approximated by averaging the results from a 
number of samples.  
 
 1.8.4  The greater the variability in the chemical concentration throughout the room is, 
the more individual samples will be required to formulate an accurate approximation of the true 
average. Therefore, as decision confidence requirements increase (i.e., as confidence increases 
toward 1 or 0 decision error tolerance), the number of samples required to correctly estimate any 
statistical parameter will also increase.  
 
 1.8.5  Only when the chemical is uniformly dispersed throughout the three dimensions of 
the room, and is held static in that condition, can a representative result be arrived at from a sin-
gle sample. The analytical error or measurement uncertainty would also need to be negligible 
when analyzing the one sample. In all other cases, the population mean must be approximated by 
averaging the results from a number of samples.  
 
 1.8.6  Variability is a measure of the degree of dispersion (or spread) for a set of values. 
The sample variance‡, s2, and sample standard deviation, s, measure the spread of individual 
measurements or values about the sample mean§, x . Some factors that may contribute to 
variability in environmental populations are the following. 
 
 1.8.6.1  Distance, direction, and elevation relative to point, area, or mobile population 
sources. 
 
 1.8.6.2  Non-uniform distribution of pollution in environmental media owing to topogra-
phy, hydrogeology, meteorology, actions of tides, and biological, chemical, and physical redis-
tribution mechanisms. 

                                                 
* Appendices C and D. 
† Appendices C and D. 
‡ Appendices D, E, and H. 
§ Appendices C, D, E, F, G, and H. 
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 1.8.6.3  Diversity in species composition, sex, mobility, and preferred habitats of biota. 
 
 1.8.6.4  Variation in natural background levels over time and space. 
 
 1.8.6.5  Variable source emissions, flow rates, and dispersion parameters over time. 
 
 1.8.6.6  Accumulation or degradation of pollutants over time. 
 
 1.8.7  For a particular sampling plan where n measurements are taken for some contami-
nant of concern in a study area, a (sample) mean concentration ( x ) and (sample) standard devia-
tion (s) for the contaminant are calculated. The standard deviation measures the variability of the 
individual measurements. However, it is often the case that it is the variability of x  itself that is 
of interest. The variability of the mean is often measured by the standard deviation of the sample 
mean, xs  = ns / . Those two sample values, x  and xs , are used to estimate the interval (range) 
within which the true mean (μ) of the chemical concentration probably occurs, under the as-
sumption that the individual concentrations exhibit a normal (bell-shaped) distribution. 
 
 1.8.8  The relationship among variability, available resources (expressed as sample num-
ber, n), and decision confidence or lack of uncertainty is fundamental to the project planning 
process. In general, cost increases as the desired level of confidence or lack of uncertainty in-
creases. Thus, balancing cost and confidence is a primary objective of the planning process. As 
illustrated in Figure 1-3, this can be depicted as a balance between cost and level of uncertainty: 
reducing uncertainty increases project costs. As the number of samples increases, the uncertainty 
decreases but the cost increases. As depicted in Figure 1-3, project planning is the fulcrum of a 
seesaw balancing cost and uncertainty.  
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Figure 1-3.  Balance between resources and certainty. 
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 1.8.9  When dealing with regulators and clients, it is often beneficial to illustrate, in 
mathematical terms, the relationship among the project objectives, the desired confidence for 
decisions, and the cost of the project.  
 
 1.8.10  Figure 1-4 illustrates the relationship of factors that need to be considered in 
successful project planning. 
 
 1.8.11  The purpose of the project planning triad approach is managing total decision 
uncertainty. Total uncertainty may be viewed as the sum of analytical and field uncertainty. 
Analytical uncertainty is the portion that arises from variability and bias in the instrumental or 
analytical test method (as indicated in Table 1-3). Field uncertainty depends on factors such as 
the temporal and spatial variability of the target environmental population (Table 1-3). Field 
variability typically exceeds the analytical variability and primarily depends on the sampling de-
sign (e.g., the total number of samples, the sample mass, and the nature of field sampling and 
laboratory sub-sampling methods). In general, data produced by screening analytical methods 
will contain more analytical variability and bias than data produced by definitive methods. How-
ever, field analyses are less costly than laboratory analyses, so a greater number of field samples 
can be analyzed than laboratory samples for the same fixed cost. Thus, even though field analy-
ses typically contain higher analytical variability relative to laboratory analyses, a larger number 
of field samples can reduce the total variability more effectively than a smaller number of simi-
larly collected laboratory samples. Field analytical methods should be scrutinized, however, be-
cause the total uncertainty does not depend on measurement precision (variability) alone; it also 
depends on a number of data quality elements such as analytical bias, sensitivity, and specificity 
(i.e., the ability to detect or quantify the analyte or contaminant of concern in the presence of 
other analytes or interferences in the sample). 
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Figure 1-4.  Project planning triad. 
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 1.8.12  The triad approach also makes use of rapid turn-around times for field methods. 
Field methods have an advantage over laboratory methods in that they are capable of providing 
data to support decisions while mobilized in the field. For example, managers can modify sample 
locations on the basis of new information about the extent of contamination during a single mo-
bilization. In contrast, fixed laboratory data packages are produced several weeks after sampling 
is complete. Remobilization may be necessary to resolve questions arising from laboratory re-
sults. 
 
 1.8.13  The triad approach is especially useful for statistical designs such as adaptive 
sampling,* ranked set sampling∗, and systematic sampling∗, as these designs often require larger 
numbers of samples. To successfully implement the approach, the capability of the field methods 
must be scrutinized with respect to project data quality and measurement objectives. For exam-
ple, many field methods are not as sensitive or selective as laboratory methods. If the primary 
objective is to characterize contamination with respect to some fixed risk-based limit or cleanup 
goal, and the detection limit is greater than the decision limit, then comparisons of the field data 
to the decision limit will not be viable. Comparisons of field and laboratory data during a pilot 
test phase to verify or establish correlation between two sets of results is a useful approach for 
evaluating and selecting field methodologies. 
 
 1.8.14  The triad approach relies on thorough, systematic planning to articulate clear pro-
ject goals and encourages negotiations among stakeholders to determine the desired decision 
confidence. A multidisciplinary technical team then determines what information is needed to 
meet those goals. A key feature of this planning is identifying what uncertainties could compro-
mise decision confidence and allowing team members with appropriate sampling and analysis 
expertise to explore cost-effective strategies to minimize them. Often, the most cost-effective 
work strategy involves the second leg of the triad, which is using a dynamic work plan to make 
real-time decisions in the field. The third leg of the triad uses field analytical methods to generate 
real-time on-site measurements that support the dynamic work plan. Projects managed using 
these concepts have demonstrated cost savings of up to 50% over traditional approaches.  
 
 1.8.15  The contributions to the total variability (i.e., the total precision component of the 
uncertainty) can be expressed as a vector sum of an analytical component and sampling compo-
nent of the variability (e.g., or as a ratio of the sampling to analytical variability, say 9:1). Al-
though the analytical variability is minimized by conventional laboratory analyses, sampling 
variability is often not adequately addressed. Budget constraints invariably limit the number of 
laboratory analyses. A combination of high laboratory analysis costs and a poor sampling design 
often results in a low sampling density that is not very representative of the environmental 
population of interest. Field studies consistently find that the sampling design, rather than ana-
lytical considerations, predominately governs the total variability. 

                                                 
* Appendices C and D. 
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 1.8.16  When analytical costs are lower, more samples can be analyzed, yielding more 
confidence in the representativeness of the data set (Phase 1). This is most effective if field 
methods are used to generate data and a dynamic work plan rapidly resolves any uncertainty 
about location and volume of contamination (for example, locate and delineate hot-spots in a 
single field mobilization). If the analytical data quality used to manage sampling uncertainty is 
less than what is eventually needed to make final project decisions, such as whether the site can 
be declared clean, more expensive definitive analyses may be performed on samples selected to 
refine the feature of interest (Phase 2). However, if the initial method produces data of sufficient 
rigor to support defensible decision-making, then additional, expensive analyses would be re-
dundant and unnecessary.  
 
 1.8.17  In Phase 1, analytical uncertainty (variability) increases so that unit sample costs 
decrease, allowing a higher sampling density than with the conventional approach. As a result, 
sampling uncertainty (variability) decreases, lowering the overall uncertainty in data interpreta-
tion. Sampling uncertainty is further decreased if hot-spot removal reduces the variability in 
contaminant concentration and if representative sampling locations for more rigorous analysis 
are identified based on Phase 1 information. The vector representation of uncertainty for this ap-
proach indicates that the overall uncertainty in the data set for site decision-making will be much 
less than the overall uncertainty in the conventional method.  
 
 1.8.18  Data quality should be judged on whether both the sampling and the analytical 
uncertainties in the data sets support decision-making at the desired degree of decision confi-
dence. However, relying solely on regulator-approved, definitive analytical methods, while ig-
noring sampling uncertainty, easily produces uncertain decisions.  
 
 1.8.19  When field analytical methods are used, the process and resulting data are often 
referred to as “field screening.” The term is misleading when field methods are of adequate 
quality to satisfy project DQOs; field analyses are not necessarily “screening” or inferior to 
fixed-laboratory analyses in the context of the overall end use of the data. Here, alternate termi-
nology is proposed to reflect current EPA guidance that both sampling and analytical uncertain-
ties must be managed to assess data quality. We consider the two terms “effective data” and 
“decision-quality data,” to be equivalent when describing data of known quality that are effective 
for making defensible primary project decisions, because both sampling and analytical uncer-
tainties have been explicitly managed to the degree necessary to meet clearly defined project 
goals. 
 
 1.8.20  Primary project decisions are those decisions that drive resolution of the project, 
such as whether or not a site is contaminated and what subsequent actions, if any, will be taken. 
Therefore, contaminant data are usually the data sets of interest. But data sets can interact in 
complex ways, and are referred to as collaborative data sets. For example, a contaminant data set 
considered alone might not be effective for making project decisions, yet the same data set might 
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be more effective when combined with other data or information to manage the remaining un-
certainties. Ancillary data refers to data used to support many other project decisions that fall un-
der worker health and safety monitoring, data that help in the understanding of fate and 
disposition of contaminants, and data that aid in decisions about the representativeness of envi-
ronmental samples. 
 
 1.8.21  This decision-making paradigm and terminology embodies the central theme of 
systematic project planning, the management of decision uncertainty.  
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CHAPTER 2 
Preliminary Assessment and Site Investigation (PA/SI) 

 
Section I 
Preliminary Assessment 
 
2.1 Introduction.  A Preliminary Assessment (PA) is initiated after a CERCLA site (or sus-
pected site) is identified. Statistical evaluations are not typically conducted for a PA. The pur-
pose of the PA is to determine if a site poses a potential threat to human health or the 
environment. EPA maintains a list of actual and potential hazardous substance releases requiring 
CERCLA response. The property owner or agent is obliged to perform a PA; for Federal facili-
ties, a PA is required within 18 months of listing (57 FR 31758; 17 July 1992).  
 
 2.1.1  The PA process collects information from existing resources. Generally, PA data 
are qualitative rather than quantitative, and do not require statistical evaluation. In some in-
stances, historical chemical data may be available, but the PA does not require that such data be 
statistically manipulated. The EPA evaluates the site information according to the Hazard Rank-
ing System (HRS) as detailed in 55 FR 51531 (14 December 1990). HRS calculations do not 
have statistical components. Some examples of PA information necessary to the HRS are as fol-
lows. 
 
 2.1.1.1  Identification of wastes or waste sources. 
 
 2.1.1.2  Physical site conditions, such as precipitation rates, depth to groundwater, or dis-
tance to surface water bodies. 
 
 2.1.1.3  Workers or residents at a site. 
 
 2.1.1.4  Local population within a set radius of a site. 
 
 2.1.2  Based on the results of the HRS, a site may warrant further investigation or no fur-
ther action. Though quantitative statistical evaluations are not required during a PA, the follow-
ing case study illustrates the value of a thorough qualitative evaluation of PA information.  
 
2.2 Case Study 1—Examining Historical Data Sets.  In the preliminary assessment of a 
landfill located on a manufacturing facility in Pennsylvania, some historical analytical data were 
available to the project team. The question raised, however, was whether or not those data would 
be usable in the PA. If the data were found to be usable and applicable, the landfill might be re-
moved from further consideration in the CERCLA process. However, if the data were not found 
to be usable, then a Site Inspection (see Section II) would be needed.  Moreover, if the data were 
used, prior to further validity testing (thus, explicitly assuming the data were reliable), and found 
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later in the assessment to be erroneous, inaccurate and misleading conclusions would have been 
drawn. 
 
 2.2.1  Several different assessments of the data were required: i) Were the precision, ac-
curacy, and representativeness of the data sufficient for the purpose? ii) Was the sampling design 
for the historical data sufficient for the purpose? and iii) Were the data comparable from histori-
cal event to historical event and could they be combined with new data, if necessary, to draw 
conclusions about the site? 
 
 2.2.2  The existing data were included in monitoring reports to the state. The reports con-
sisted of little more than sample identification, date, and analytical results. Only positive detec-
tions were reported. Based on that information alone, the project team could not assess the 
quality of the data and concluded that unless additional information was obtained, the data could 
not be used as part of the PA. The site owners began to investigate the origins of the data. 
 
 2.2.3  In the interim, the project team assigned a geologist to examine the sampling de-
sign for the work. The facility had identified a single monitoring well, MW-02, as an upgradient 
location for comparison to a set of three downgradient wells, MW-03, MW-06, and MW-08. 
Through a review of well construction diagrams, as well as available topographic and hydro-
geologic information, the geologist found that the well identified as upgradient was located 
within 3 feet of the landfill footprint, in a swale that received run-off from the landfill. 
 
 2.2.4  Thus, it was likely that the upgradient well was directly impacted by landfill opera-
tions and would not constitute an acceptable upgradient location. Further, MW-06 and MW-08 
were found to be generally cross-gradient to MW-02 rather than directly downgradient, and that 
MW-03 had been screened in a perched aquifer, hydrologically isolated from the aquifer moni-
tored by the other three wells. 
 
 2.2.5  Upon receipt of laboratory data packages for the historical data, the project team 
observed that a variety of different analytical methods and laboratories had been employed in the 
course of the work, resulting in mixed reporting limits and inconsistent detection of analytes. As 
a result of these assessments, the historical data were judged not to be usable for the PA. 
 
 2.2.6  In summary, prior monitoring appeared to indicate the presence of contamination 
(e.g., which would have triggered an RI), but additional evaluation data indicated that the data 
were not usable; therefore, an SI was initiated. 
 
Section II 
Site Inspection 
 
2.3 Introduction.  The Site Inspection (SI) is the next step in the CERCLA process. Statisti-
cal evaluations are often appropriate for an SI. Typically, the major objective of these evalua-
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tions is to establish the presence or absence of site contamination with respect to predefined de-
cision limits. An SI is performed if the PA indicates the potential for hazardous materials to be 
present, if human or ecological receptors, or both, exist, and if there are potential complete expo-
sure pathways for the receptors. The SI generally focuses on establishing, through sampling and 
analysis, whether hazardous materials are present at concentrations that exceed some “screening 
criteria.” The project planning team must establish decision limits or screening criteria prior to 
sampling and analyses. Generally, decision limits fall into the following categories: 
 
 2.3.1  Naturally occurring or known background levels (site-specific background infor-
mation is typically unavailable at the SI stage). 
 
 2.3.2  Ecological benchmarks, which are dependent on analytes and media (typically de-
veloped with regulatory input). 
 
 2.3.3  Risk-based screening criteria for human health such as EPA Region IX Preliminary 
Remediation Goals (PRGs) or EPA Region III Risk-based Concentrations (RBCs) are available 
at the following Web sites. 
 
 http://www.epa.gov/region09/waste/sfund/prg/index.html  
 
 http://www.epa.gov/reg3hwmd/risk/index.htm 
 
 2.3.4  Applicable or relevant and appropriate requirements (ARARs) such as Maximum 
Contaminant Levels (MCLs) for drinking water are available at  
 
 http://www.epa.gov/waterscience/criteria/drinking/. 
 
 2.3.5  During the DQO process, stakeholders identify the study questions, such as the 
presence or absence of contamination with respect to a set of decision limits, the nature and 
quantity of the data required to support the decision-making process, and the acceptable toler-
ances for decision errors. Selecting the screening criteria is critical for establishing both data 
quality objectives (DQO) and measurement quality objectives (MQOs). MQOs are established 
after DQO development. MQOs for analytical sensitivity must be adequate to report quantitative 
contaminant concentrations at levels less than the project decision limits. (Refer to Appendix G 
for a discussion of detection limits and quantitation limits.) 
 
 2.3.6  Team members must establish the DQOs for the project at the outset of the SI. In 
an SI, stakeholders must identify the problem at the site and how it will be evaluated, identify the 
decisions to be made using the data, and specify limits on that decision error. These will lead the 
project team to an optimal sampling design at a site. Appendix G discusses detection limits, 
quantitation limits, and censored data. Understanding the concepts in the context of ARARs 
guides part of the project planning. 
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2.4 Sampling Design.  In general, statistical sampling designs are required to support statisti-
cal evaluations. Professional judgment, site-specific information, and DQOs must be used to se-
lect the type of the statistical sampling design (e.g., random* as opposed to systematic sampling) 
and the required number of samples. The sampling design depends on factors such as the nature 
and distribution of the contamination in the study area, sampling cost, tolerances for decision er-
ror, and perceived level of decision uncertainty. For example, a small number of samples during 
the SI stage may be beneficial for short term cost considerations, but may not be adequate to 
achieve the desired tolerances for decision uncertainty and error and may, therefore, not be a 
cost-effective strategy by project closeout (as multiple sampling events rather than a single sam-
pling event would typically be required to support decision-making).  
 
 2.4.1  Decision uncertainty refers to statistical variability, subjective judgment, random-
ness in the process, disagreement, and even imprecise wording inherent in the decision-making 
process (Moser 2000). Decision uncertainty is a function of the variability of the contaminant of 
concern in a study area and depends on the number of samples collected. For example, if the 
sample mean, x , is an appropriate measure of site-wide contamination and the standard devia-
tion of the sample mean, xs , measures the variability around x , then the variability (and uncer-
tainty) decreases as the number of samples n increases, because xs  = ns / . (Increasing the 
physical size of each sample would also decrease the variability.) It should also be noted that, in 
addition to decreasing the variability, x becomes a more accurate estimate of the population 
mean, μ, as n increases. 
 
 2.4.2  Site-specific information must be taken into account when selecting the sampling 
design. In particular, the team members need to identify potential source areas and any stratifica-
tion they may represent. For example, suppose there are two sources of lead at a bomb recondi-
tioning facility—stack emissions affecting surface soil and old buried waste piles affecting 
subsurface soil. This information can be used to design a sampling scheme for the “surface soil 
stratum” and a separate scheme for the “subsurface soil stratum.” Likewise, there may be differ-
ent study objectives for each stratum.  Surface lead may be of concern for exposure of site work-
ers and subsurface lead may be of concern for protection of groundwater. Stakeholders would 
need to identify these issues during project planning to develop an optimal site-wide sampling 
design. 

                                                 
* Appendices C and D. 
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 2.4.3  Several different types of sampling designs are listed below. Appendix C presents a 
detailed explanation of these designs.  
 

• Judgmental sampling. 
• Random sampling. 
 - Simple random sampling. 
 - Stratified random sampling. 
 - Systematic and grid sampling. 
• Ranked set sampling. 
• Adaptive cluster sampling. 
• Composite sampling. 

 
 2.4.4  The TPP and DQO processes are used to develop an appropriate sampling design 
for the SI phase. Two case studies are presented below to illustrate sampling designs commonly 
used for SI. 
 
2.5 Case Study 2—Judgmental Sampling, Oil/Water Separator.  Project planners found 
an oil/water separator buried underground at a pipe mill. There was evidence of leakage to the 
surface soils around the tank and a release to groundwater was suspected. The objective was to 
determine if there was a measurable presence of oil floating on the water table. 
 
 2.5.1  Historical information and local knowledge allowed a hydrogeologist to determine 
the direction of groundwater flow. The hydrogeologist also knew of two monitoring wells in the 
area. One well was located upgradient to the separator; the second was cross-gradient. 
 
 2.5.2  The project planners decided to place a new monitoring well downgradient of the 
separator. Because they were looking for an oil product, the soil boring for the monitoring well 
was logged by a geologist who could then identify the water table depth. The well was installed 
so that the screen intersected the water table, where floating oil would most likely be visually de-
tected. 
 
 2.5.3  Judgmental sampling was predominantly used in this example because the planners 
possessed significant existing site information. They knew the physical properties of the oil, they 
knew the hydrogeology of the site, and they were answering a nonquantitative question.  
 
 2.5.1  Case Study 4 predominantly illustrates the application of composite sampling* and 
stratification† for a SI, and the iterative nature of the DQO process when optimizing a sampling 
design.  

                                                 
* Appendices C and D. 
† Appendix D. 
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2.6 Case Study 3—Arsenic Contamination in Soil.  At an active manufacturing site, arse-
nic contamination was widespread in surface soils. Preliminary screening analyses and risk as-
sessments identified worker exposure as the most likely concern. The site was initially divided 
(stratified) into 90 subunits related to work areas for a more in-depth evaluation of risk. Based on 
financial constraints, the project team was allocated a budget of $50,000 for SI sampling and 
analytical testing. 
 
 2.6.1  The aggregate initial cost of a field grab sample was $175, with $100 attributed to 
field collection and $75 attributed to laboratory analysis. The expected percent relative standard 
deviation (%RSD) for the analytical (laboratory) measurements was 5%. The estimated standard 
deviation, s, for the analytical method, at the decision limit of 600 ppm, was computed as 5% of 
600 ppm or 30 ppm. 
 
 2.6.2  The planning team estimated the field component of the variability to be 10 times 
greater than the laboratory component of the variability. Thus, the %RSD for the field compo-
nent of the variability was calculated by multiplying the %RSD for the analytical measurements 
by 10 (yielding a field component %RSD of 50%). This estimate was then multiplied by 600 
ppm to yield a value of s equal to 300 ppm for the field component of variability (i.e., 50% of 
600 ppm). The estimates for field and analytical variability (i.e., variance or s2) were then com-
bined and the standard deviation was calculated (s = 330 ppm). The maximum observed arsenic 
concentration was 720 ppm. The analytical method was deemed appropriate by the planning 
team. If historical sampling data were available, the data would be used to estimate the field 
variance and to test for normality. 
 
 2.6.3  The planning team principally considered two sampling design alternatives—sim-
ple random sampling and composite sampling (see Appendix C for a review of each sampling 
method). A t-test was used to calculate the sample size for simple random sampling (Appendix 
F). Given a decision error limit of α = 0.01, more than 200 samples per work area would have 
been required (refer to Appendix L for a review of methods involved in setting and testing hy-
potheses). The total cost of this sampling effort would have exceeded $3 million.  
 
 2.6.4  Using similar methods, the team explored composite sampling, which would have 
required 30 samples to be collected per work area for a cost of over $1 million. Given the con-
siderable cost burdens for both proposed sampling designs, the team decided to return to Step 6 
of the DQO process and modify the decision error limits. The team found that by increasing α to 
0.05, the composite sampling design would require the collection of 13 samples for each of the 
90 work areas. This revised design had a total cost of $204,750, approximately one-fifth of the 
original estimate.  
 
 2.6.5  The team realized that they would have to find other means of generating an ap-
propriate design while remaining within budget. To do this, the project team redefined the 
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boundaries of the study (by revisiting Step 4 of the DQO process). The team recognized that one 
of the drivers of the cost was the large number of separate study units (previously, the calculated 
sample size was applied to each of the study units). The planning team used exposure informa-
tion for the contaminant to map out the potential or expected pathways in the surface soils 
through which the contaminant could spread.  The potential pathways were categorized into four 
distinct spatial units. 
 
 2.6.6  Rather than collect data and make decisions for each of the 90 individual work ar-
eas, the team decided to sample and make decisions for each of the four risk areas. Recognizing 
that these larger areas carried greater decision error consequences, the team revisited Step 6 of 
the DQO process and established new limits for decision errors applicable to the four risk areas. 
The team established different decision confidence limits for each and recalculated the number 
of samples required. The cost of implementing this design was $38,850, which fell within the 
$50,000 budget for the sampling and analysis. 
 
2.7 General Review of Sample Size Determination*.  For typical statistical sampling de-
signs, there are well-defined relationships between the number of required samples (i.e., sample 
size), tolerance for decision errors, and inherent variability of the analytical measurements and 
the target environmental population. One such relationship states that the sample size increases 
as the tolerance for decision error decreases or the variability increases. The sample size must be 
equal to or greater than the sample size required to achieve predetermined tolerances for decision 
errors. When confidence limits for the mean are of interest, an appropriate sample size is re-
quired to generate a sufficiently precise estimate of the true mean concentration of a chemical 
contaminant (refer to Paragraph 3.11 and Appendix K for additional discussion of confidence 
limits). For the example presented above, the sample size must be adequate to demonstrate that 
the upper limit of the CI for μ is less than the applicable regulatory threshold, RT. The required 
sample size must increase as s2 increases and as the difference Δ (RT – x ) decreases. In a well-
conceived sampling plan for a solid waste, every effort should be made to estimate the values of 
x  and s2 before sampling starts. Case Study 3 illustrated that decision confidence affects sample 
size. Case Study 4 illustrates this concept in a different setting. 
 
2.8 Case Study 4—Effect of Decision Confidence on Sample Number.  Upon promulga-
tion of the Toxicity Characteristic Leaching Procedure (TCLP) rule, a steel mill in Maryland 
contracted with a consultant to collect samples from various waste streams within the facility for 
TCLP analysis of metals (this case study considers only the cadmium data). One such waste 
stream was from a wastewater treatment system and consisted of collected sludges. Although no 
previous analysis of sludges had been done, cadmium had been monitored in the wastewater 
stream before treatment. The project manager believed that the wastewater data would be suffi-
cient for establishing routine variability of cadmium in the sludge, assuming there were no great 

                                                 
* Appendix C. 
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differences in the treatment process over time and a 10 times concentration factor from waste-
water to sludge. 
 
 2.8.1  The project manager decided to use the past year’s wastewater data to make pre-
liminary estimates of the number of samples required to meet the statistical confidence re-
quirements of the TCLP rule (i.e., α = 0.2). Four results (in milligrams per liter [mg/L]) were 
available from the previous year as follows: 14.2, 9.6, 21.7, and 19.3. 
 
 2.8.2  The mean and variance of the results (as adjusted for concentration to sludge) were 
the following: x = 1.6 mg/L and s2 = 2.2 mg/L, respectively. The proposed water regulatory 
threshold value (RT) was 1 mg/L. Using the formula for simple random sampling, the project 
manager calculated the number of samples required as follows: 
 
 2 2 2( ) (RT )n t s x= × ÷ −   
 
where: n = number of samples required 
 t = Student’s value for n–1 degrees of freedom and 0.8 confidence 
 s2 = sample variance 
 x  = sample mean 
 RT = regulatory threshold. 
 
 2.8.3  Thus, n = [(0.9785)2×2.2]/(1 – 1.6)2 = 6 samples. Samples are an integer value, and 
should be reported without decimal fractions. (The value of t may be obtained from Table B-23, 
where df = 3 and p = 0.8.) Assuming a sampling cost of $50 per sample and an analytical cost of 
$25 per sample, this testing would cost $450. 
 
 2.8.4  The client’s attorneys asked what the effect would be should they wish to establish 
a safety margin by increasing the decision confidence to α = 0.05. The revised plan would re-
quire 
 
 n = [(2.353)2×2.2]/(1 – 1.6)2 = 34 samples, or a sampling and analysis cost of $2,550. 
 
2.9 Summary of Case Studies.  Case studies 2 through 4 illustrate the multitude of related 
factors that must be considered when evaluating which sampling design to apply in a particular 
SI. When evaluating alternative sampling plans, planners may anticipate the concentration pat-
terns likely to be present in the target population. Advanced information about these patterns can 
be used to design a plan that will estimate population parameters with greater accuracy and less 
cost than can otherwise be achieved. 
 
2.10 Comparing On-site Data to Fixed Screening Criteria.  In the data analysis phase of the 
SI, environmental scientists compare site data to screening values using either qualitative or 
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quantitative statistical evaluations. The following provides a discussion of qualitative and quan-
titative evaluations. 
 
 2.10.1  Qualitative Statistical Evaluations.  The EPA has developed risk-based screening 
criteria in the form of PRGs and RBCs. These criteria are frequently applied at the SI stage to 
identify whether the site as a whole may need further attention in an RI/FS. Many screening cri-
teria exist at both the Federal and state government level. Thus, comparisons are frequently made 
against the lowest of several screening criteria that can be applied to a given data set from a 
given location. The technical team must ensure that the criteria are being applied properly (i.e., 
not all screening criteria are applicable to every site), and that the implications are clear in the 
conclusions of the SI. For example, if site data exceed a standard developed to protect ground-
water from soil leaching of contamination, but do not exceed an applicable human health stan-
dard, the team should report the results with the implications of these differences noted in the 
conclusions. 
 
 2.10.2  One typical qualitative method of comparing data decision limits entails the use of 
a spreadsheet or database. The decision limits and individual sample results are presented in a 
tabular format and each detected analyte concentration is compared to the corresponding screen-
ing values for that analyte. (It may be necessary to compare a single contaminant of concern to 
only the lowest decision limit or several different decision limits.) Table 2-1 is an example of 
such a spreadsheet.  
 
 2.10.3  The primary pitfall of this qualitative strategy is that the uncertainty associated 
with the reported results is not considered when the results are compared to the decision limits. 
Thus, the reported results may actually be equal to or exceed decision limits when uncertainty is 
taken into consideration. If this is the case, especially in the event the decision limit is exceeded, 
the wrong conclusion would be drawn. The ramification of an erroneous conclusion will vary, 
depending on the nature of the problem under investigation; nevertheless, this is an outcome that 
should be avoided or at least minimized. 
 
 2.10.4  Historically, environmental researchers have tended to screen analytical results 
into two categories—greater than the standard or less than the standard. Through advances in re-
search and technology, three categories now exist against which analytical results can be com-
pared: i) the reported value clearly exceeds the standard (when bias and variability are taken into 
account); ii) the reported value clearly does not exceed the standard; and iii) the result is incon-
clusive. This last conclusion is reached when the uncertainty is too large for reliable decision-
making. 
 
 2.10.5  Table 2-1 illustrates how qualitative information may be used to support the deci-
sion making process when SI data are qualitatively, rather than statistically, compared to deci-
sion limits. In particular, information regarding the quality of the data, obtained in the data 
validation process, is used to determine whether contamination is present at concentrations 
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greater or less than project decision limits. All applicable screening criteria are displayed in Ta-
ble 2-1. For example, the “S” column reports the results of comparing each analyte concentration 
and the lowest screening limit. One of three codes is entered in this column for the three possible 
conditions identified in the preceding paragraph. An “X” is recorded if the reported values ap-
pear to be well above the decision limit, an “I” if the result is inconclusive, and a blank space if 
the result appears to be well below the limit. Select results from Table 2-1 are discussed below to 
illustrate the nature of the screening evaluation. 
 
 2.10.5.1  Tetrachloroethene results in IRP-49 (1.2 ppb) and IRP-51 (17.08 ppb) both ex-
ceed the PRG (1.1 ppb). Although the value in IRP-49 is barely above the PRG, it reports the re-
sults as two significant figures, so we must accept its value as exceeding the PRG. However, 
accounting for analytical error, typically between 20 and 30% (as a conservative estimate), this 
result would be inconclusive. The researcher then must choose whether to conduct additional 
testing or accept the value of IRP-49 as an exceedance. The latter would be selected only if a 
conservative estimate was desired. 
 
 2.10.5.2  In IRP-49 (0.2 ppb) and IRP-51 (0.2 ppb), the reported concentration is not dis-
tinguishable from the PRG when compared on the basis of just one significant figure. Therefore, 
these results are inconclusive. 
 
 2.10.5.3  Several chloromethane results are marked inconclusive because of blank con-
tamination. The only sample without blank contamination, IRP-39, was below the PRG (PRG = 
1.5 ppb; IRP-39 = 0.2 ppb). The reported concentration was qualified with a J flag because it is 
less than the quantitation limit of 1 ppb. (The quantitation limits are not listed in Table 2-1, but 
were obtained from the laboratory’s data package.)  
 
 2.10.5.4  For bromodichloromethane in sample IRP-48 (0.2 ppb), the reported concentra-
tion is biased low and is less than the quantitation limit of 1 ppb, so this exceedance of a PRG 
(0.18 ppb) is conclusive. In sample IRP-51 (0.1 ppb), the result is also biased low and is just be-
low the PRG, so this result is also not conclusive. 
 

2.10.5.5  For chloroform in sample IRP-39 (0.4 ppb), the reported concentration is quali-
fied with a J flag because it is less than the quantitation limit of 1 ppb. As the reported result is 
quantitatively estimated, it does not reliably demonstrate that chloroform is present above the 
PRG. 

 
 2.10.5.6  Benzo(a)pyrene was reported in sample IRP-49 (0.278 ppb) above the PRG 
limit (0.0092 ppb). However, the detection limit (0.014 ppb) is above the PRG for the remaining 
samples. Only by achieving a lower detection limit is it possible to determine whether the non-
detects are a problem. The results for benzo(a)pyrene are marked inconclusive. All of the arsenic 
non-detects are inconclusive based on a similar rationale. 
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Table 2-1 
Site Screening Data Table 

   
EPA 
MCL 

Region IX 
PRG 

(1999) IRP-39 IRP-48 IRP-49 IRP-51 
Analyte Units Tap Water  L V S  L V S  L V S  L V S 
Organics                    

Bromodichloromethane μg/L — 0.18 0.1 U   0.2 J L, s I 0.1 U   0.1 L, s  I 
Carbon Tetrachloride μg/L 5 0.17 0.1 U   0.1 U   0.1    0.4 J J I 

Chloroform μg/L — 0.16 0.4 J J I 0.1 U   0.1 U   0.1 U U  
Chloromethane μg/L — 1.5 0.2 J J  6.1  B I 1.6  B I 3.7  B I 

Methylene Chloride μg/L 5 4.3 0.1 U   0.1 U   0.1 U   0.1 U   
Trichloroethene μg/L 5 1.6 0.4 J J  0.1 U   18.7   X 18.1   X 

Tetrachloroethene μg/L 5 1.1 0.1 U   0.1 U   1.2   X 17.1   X 
Benzo(a)pyrene μg/L 0.2 0.0092 0.014 U  I 0.014 U  I 0.278   X 0.014 U  I 

Inorganics                    
Arsenic mg/L 50 0.045 0.7 U  I 0.7 U  I 0.7 U   0.7 U  I 

Chloride mg/L 250 — 311   X 15.8    265   I 134.7    
Lead mg/L 15 — 0.3 U K  0.3 U K  8    10    

Nickel mg/L — 730 590    29.0    214    198.0    
Sulfate mg/L 250 — 44.0    5.98    41.6    21.45    

Thallium mg/L 2 2.9 1.4    0.8 U   0.8 U   0.8 U   
Vanadium mg/L — 260 1.4    1.0 U   3.0    5.0    

Notes: L column contains the laboratory flags. V column contains the validation flags.  S column contains screening results. 

Flags: U – Not detected above reported detection limit.      Screening Codes: 

 B – Not detected substantially above a laboratory or field blank.       X – sample concentration unequivocally exceeds the lowest screening standard. 

 L – Biased low.       I –  sample concentration comparison to screening standard is inconclusive. 

 K– Biased high.         –  A blank cell indicates that the sample concentration unequivocally does not exceed the 

 s – Surrogate failure.                      lowest screening standard. 
  J – Quantitatively estimated  
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 2.10.5.7  Though the reported concentration of chloride in sample IRP-49 (265 mg/L) is 
not qualified as estimated and exceeds the decision limit (250 mg/L), the result is marked incon-
clusive because the difference between the detected concentration and the decision limit is less 
than 5%, which is smaller than the analytical error for the test method (e.g., the error tolerance 
for the test method is typically 5 to 20%). 
 
 2.10.6  These results illustrate the critical importance of estimating and incorporating into 
decision-making knowledge of both the field and laboratory components of variance. One fun-
damental error is treating the reported results as conclusive when in fact they are not. The values 
represented in this table are measurements, and measurements contain bias and variability that 
must be accounted for in decision-making. (See EM 200-1-10 for additional guidance on the data 
review strategies that were primarily used to qualify the results in Table 2-1.)  
 
2.11 Quantitative Statistical Evaluations.  When the results of the qualitative statistical 
evaluations are inconclusive, further investigation is required. DQOs must be revised so that the 
parameter of interest is no longer a single datum per location. Instead, multiple samples are col-
lected for those uncertain locations and the resulting distribution of values is compared to the de-
cision limit using quantitative statistical tests. The results would typically be statistically 
compared to decision limits using one-sample tests* for central tendency, as discussed below. 
 
 2.11.1  All statistical tests require the user to make certain assumptions about the data to 
perform the statistical test. The user must demonstrate that the underlying assumptions for a par-
ticular statistical test are reasonable before doing the test. With respect to these underlying as-
sumptions, statistical tests can be roughly categorized as either parametric† or non-parametric.   
When non-parametric tests are conducted, data sets are required to satisfy fewer assumptions 
than for the corresponding parametric tests.  In particular, a parametric statistical test assumes a 
specific distribution  for the data (i.e., the entire population is described by some specific 
mathematical function), such as the bell-shaped curve for the normal distribution‡. Statistical 
plots of actual measured sample concentrations must be substantively consistent with the corre-
sponding plots generated using the theoretical functional relationship. Tests that require normal 
or log normal distributions are most commonly used. (A data set is log normal if, when the log of 
each datum is calculated, the resulting set of values is normally distributed.) Common graphical 
methods (i.e., plots) are presented in Appendix J. In addition, an overview of the evaluation of 
distribution assumptions is presented in Section III of Chapter 3. 
 
 2.11.2  It should also be noted that parametric tests become problematic, and may not be 
possible to perform, when the data sets contain a significant number of censored§ values (i.e., 
analyte concentrations reported as non-detects). However, as described in Appendix H, it may be 
                                                 
* Appendix L. 
† Appendices H and I. 
‡ Appendices E, F, and J. 
§ Appendix H. 
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possible to use the Poisson distribution* for highly censored data. Parametric tests are also prob-
lematic when there are outliers. The possibility of outliers† should be considered in every analy-
sis.  
 
 2.11.3  Non-parametric tests do not assume a specific functional relationship for the data 
distribution. These tests tend to be less sensitive to outliers and non-detects than parametric tests. 
Although non-parametric tests are more applicable relative to parametric tests, non-parametric 
tests tend to be less statistically powerful‡ than parametric tests. In essence, this means that more 
samples must be collected for a non-parametric test relative to the corresponding parametric test 
to make decisions at the same level of confidence. 
 
 2.11.4  Background concentrations of naturally occurring and anthropogenically derived 
compounds are also possible screening criteria. However, there are few instances in which such 
background levels are available at the SI stage. Sometimes a “site-wide” statistical background 
study has been done. If such a study is available, two-sample statistical tests§ would be used to 
compare the study area data set with the “site-wide” background data set. (As the name implies, 
a two-sample statistical test is predominantly a statistical evaluation to compare two separate sets 
of data.) Because an RI often includes specific sampling for background, the determination of 
background levels and their usefulness is described in Chapter 3. If the SI is the first sampling 
event for a site, there is a low probability that site-specific background sample data exist. 

                                                 
* Appendices E, G, and H. 
† Appendix I. 
‡ Appendix O. 
§ Appendix M. 
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CHAPTER 3 
Remedial Investigation/Feasibility Study (RI/FS) 

 
3.1 Introduction.  If, based on the PA/SI, a site warrants listing on the National Priorities 
List (NPL), an RI/FS is performed at the site.   
 
 3.1.1  The RI is the stage in the CERCLA process for collecting data to do the following. 
 
 3.1.1.1  Characterize site conditions (e.g., thickness of unsaturated soil [vadose zone], 
depth to groundwater, vegetative cover, background conditions). 
 
 3.1.1.2  Determine the types, conditions, and distribution of the waste contamination in 
affected media. 
 
 3.1.1.3  Assess risk to human health and the environment. 
 
 3.1.1.4  Conduct treatability tests to evaluate the potential performance and cost of the 
treatment technologies that are under consideration. 
 
 3.1.2  The FS is the stage for the development, screening, and detailed evaluation of re-
medial actions.  
 
 3.1.3  The RI and FS are intimately linked. Data from the RI influence the development 
of remedial alternatives in the FS, which in turn affect the data needs and scope of treatability 
studies and additional field investigations. This phased approach encourages the planning team 
to continually plan the site characterization effort, which minimizes the collection of unnecessary 
data and maximizes data quality. 
 
 3.1.4  As in the SI phase, the initial statistical elements in the RI process involve the de-
velopment of DQOs. The statistical evaluations used for the RI typically include those performed 
for the SI. For example, as in the SI, site data are often statistically compared to some set of fixed 
decision limits and upper confidence limits are often established (as discussed in Chapter 2). In 
general, the statistical evaluations are more common for RIs than SIs, and the statistical analysis 
tends to be more comprehensive. In part, this is because typically data coverage is greater and the 
RI data quality objectives are more robust. For example, while the SI predominantly focuses on 
statistical evaluations to resolve the presence or absence of contamination, the RI reaches for a 
determination of the extent of contamination. Critical to the onset of an RI is the identification of 
Applicable or Relevant and Appropriate Requirements (ARARs), which, in turn, may influence 
the identification of areas requiring remediation. Both sampling strategy and extent of contami-
nation are influenced by the selection of ARARs. ARARs help identify the best analytical proce-
dures needed to reach decision limits. This aspect of DQOs is addressed in Appendix C. 
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Section I 
Site Characterization 
 
3.2 Introduction.  The first two objectives of the RI (subparagraphs 3.1.1.1 to 3.1.1.4) are 
combined for discussion in this Paragraph. The process of site characterization is linked to the 
procedures described in Section II of Chapter 2, where sampling distribution design was dis-
cussed. In the RI stage, sample design is likely to be influenced by SI data. In turn, these SI re-
sults affect the statistical methods at the planner’s disposal for collection of site data. 
 
 3.2.1  When scoping for the SI, project planners have expectations about the probable lo-
cation and nature of contamination. By the time a site reaches the RI, some usable information is 
usually available. In particular, if a contaminant was identified in the SI, planners may have an 
idea of the mean and standard deviation of contaminant concentrations. These initial estimates 
assist in devising a statistical sampling design at the RI stage. Two examples of using site data to 
support sampling design are presented in this Paragraph. These are “hot spot” sampling and geo-
statistical sampling, the fundamentals of which are presented in Appendices C, J, and Q. 
 
 3.2.2  A “hot-spot” typically refers to a localized area of high concentration, but is often 
otherwise poorly defined (e.g., criteria for the size and concentration of hot spots are often arbi-
trary or not specified). Hot-spots are not uncommon at sites where waste was released in an iso-
lated region, perhaps during a spill. In addition, hot-spots may occur within broader regions with 
low, but detectable, levels of contamination. One example of this may be when an area was used 
to process waste disposal over some time and, at times when a shop or operation was cleaning 
house, a high concentration of waste would be deposited. However, sample concentrations that 
exceed a regulatory threshold or other decision limit should not be considered to be hot-spots if 
these concentrations appear to be randomly distributed and will not necessarily be of concern if 
they represent a small portion of study area and contain a small contaminant mass. 
 
 3.2.3  Case study 1 presents an RI application of the hot-spot identification method dis-
cussed in Appendix C. 
 
 3.2.4  In this instance, professional judgment led to the determination of the size and 
shape of the hot-spot. The reader is urged to vary S and L to identify the sensitivity of hot-spot 
sampling grids to the assumptions. 
 
 3.2.5  As stated previously, there is typically some knowledge of contaminant distribution 
at a site by the time an RI begins. Geostatistics allow an investigator to extrapolate (and interpo-
late) what is known in one location to other nearby related locations. Its application relies on the 
fact that, given a known concentration at one location, an adjacent location is likely to have a 
similar concentration. The greater the distance from the known concentration, the greater uncer-
tainty there is in predicting a concentration at an unsampled location. This situation can be de-
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scribed as a spatial correlation, because correlations are related to how close samples are to one 
another. Geostatistical methods are described in detail in Appendices J and Q. 
 
 3.2.6  Case Study 2 illustrates the use of geostatistics for reducing uncertainty in a pro-
ject. Although geostatistical techniques are more common for RIs than SIs, they may also be 
used for SIs if sufficient site data are available. 
 
 3.2.7  One of the major RI objectives is identifying the distribution of contamination at a 
site. As useful as geostatistics are in helping with sampling design, they may also be used in in-
terpreting sample data. The geostatistical method known as kriging (Appendix J) is an effective 
method for interpolating site concentration data under conditions where spatial correlation exists. 
Kriging is a weighted-moving-average interpolation method. The USEPA developed a two-
dimensional kriging package, which is useful in providing a fundamental introduction to the 
technique (Geo-EAS; EPA/600/4-88/033). Kriging as a method of contouring is described in 
several readily available texts, and typically requires the use of commercially available computer 
software with kriging options for contouring (e.g., Surfer, EVS). 
 
3.3 Case Study 1—Hot-Spot Identification.  The project team attempted to locate a hot-
spot resulting from an uncontrolled water release within a larger storage area. The total storage 
area was approximately 150 by 200 feet. Because the suspected waste was spilled as a liquid, the 
hot-spot was assumed to be approximately circular. A best estimate of the diameter was ap-
proximately 20 feet. The method proceeded in steps as follows: 
 
 3.3.1  A circular hot-spot means S equals 1. 
 
 3.3.2  The radius of the target spot is 10 feet. 
 
 3.3.3  The team assigns a value of 0.1 to the acceptable risk of not finding the hot-spot.  
 
 3.3.4  Using S and β, refer to Table D-1 (or nomographs presented in Gilbert, 1987) to 
determine that L/G is 0.55 for a square grid and 0.50 for a triangular grid. 
 
 3.3.5  Using the relationship L/G and the assumed radius of 10 feet, we see that square 
grid spacing is 18 feet and triangular grid spacing is 20 feet (values are rounded to the nearest 
foot to reflect the significant figures). 
 
 3.3.6  One sample will be placed at each grid node in the storage area, so that a square 
grid requires 88 samples and a triangular grid requires 75 samples. 
 
3.4 Case Study 2—Using Geostatistics in Project Planning to Reduce Uncertainty and 
Cost.  At a site in the Midwest, project planners were asked to assess a site potentially contami-
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nated with lead at levels exceeding risk-based limits. A SI was conducted using a grid system 
over areas that were suspected of being contaminated based on historical information.  
 
 3.4.1  The project team identified lead concentrations in soil exceeding threshold values 
in various areas of the site (red circles in Figure 3-1). They were required to move on to an RI/FS 
to more fully characterize the nature and extent of contamination and develop preliminary esti-
mates of cost for a removal action. Initially, the team intended to collect numerous additional 
samples on a grid (green circles in Figure 3-1) to more fully delineate the extent of contamina-
tion. However, the project geologist suggested the use of geostatistics as a means of reducing the 
number of samples without increasing uncertainty. 

 
  

 
 

Figure 3-1.  Initial sampling grid and proposed new samples. 
 
 3.4.2  Geostatistics can predict both the concentration and the uncertainty for an unsam-
pled portion of the study area. In essence, spatial correlations for contaminant concentrations es-
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tablished from the existing data set are used to “extrapolate” sample concentrations and uncer-
tainty for other portions of the study area. Consequently, the team was able to use a geostatistical 
evaluation to assess the value of collecting additional samples at any given location in the grid. 
Simply put, the team recognized that in any sampling and analysis system there will be bias and 
variability, and that estimates of that bias and variability could be made using the existing data. 
Thus, at any location where the estimate of uncertainty from the geostatistical prediction was less 
than the uncertainty from sampling and analysis, the team reasoned that there was no value in 
collecting additional samples. 
 
 3.4.3  The final sampling plan required the addition of only seven new sampling points 
(shown as black circles in Figure 3-2) with associated cost savings of over $12,000. 

 
  

 
Figure 3-2.  Samples required after geostatistical analysis. 
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Section II 
Background Comparisons 
 
3.5 Introduction.  Not all chemicals detected at hazardous waste sites originate from site-
related activities; for example, metals in soil and groundwater are often present because of natu-
ral geological conditions. Similarly, anthropogenic activities unrelated to a site frequently con-
tribute certain organic chemicals (e.g., polycyclic aromatic hydrocarbons [PAHs] or pesticides 
derived from urban or agricultural sources; EPA SOW No. 788). If site sample concentrations for 
a specific compound are similar to or lower than background concentrations*, there may be no 
need to consider potential remedial actions with respect to that compound. This determination 
can be quantitatively defended by use of statistical comparison methods. 
 
 3.5.1  The project team should determine the background sampling locations and parame-
ters during the planning stages of the RI. Separating and identifying background sample loca-
tions from portions of the study area that have been potentially affected by waste handling 
activities is an example of stratification. The critical factor distinguishing a background sample 
from the site lies in understanding where contaminated areas end and natural conditions begin. 
Such samples may be located upwind, upstream, or upgradient from the waste site. Background 
data should be drawn from media that physically represent the study area; they should be from 
the same soil type or geological deposit, same type of surface water system (for example, fresh-
water versus saltwater; wet season versus dry season), or from the same aquifer as the site data. 
It is also critical to collect the background samples in substantively the same manner that the site 
samples are collected (same analytical method, volume of sample, etc). The sampling design and 
analytical methodology for the background and the site study areas must be similar. For example, 
erroneous conclusions can result if judgmental sampling is done for the site study area but ran-
dom sampling is done for the background study area. 
 
 3.5.2  Background locations should be in a nearby portion of the region unaffected by site 
activities. As a caveat, site planners should be skeptical if regulators prefer to limit background 
sampling to only pristine areas; doing so will potentially result in erroneously concluding that the 
study area has been adversely impacted by site-related waste handling activities. 
 
3.6 Does Background Soil Differ From Site Soil?  The USEPA has developed guidance for 
addressing whether site soil characteristics differ from background (EPA/540-R-01-003 and 
EPA/540/S-96/500). The guidance EPA/540-R-01-003 emphasizes the formulation of DQOs in 
devising background sampling design and subsequent site to background testing. The focus of 
the cited guidance is only to determine whether site and background soil chemistry differ. It does 

                                                 
* Background does not mean pristine or unaffected by human activity, especially at sites in heavily industrialized ar-
eas. 
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not establish comparison standards, or levels of background that may replace unnaturally low 
risk-based clean-up goals. 
 
 3.6.1  Fundamentally, the USEPA guidance (EPA/540-R-01-003) identifies two forms of 
background testing: 
 
 3.6.1.1  Background Test Form 1.  Tests the null hypothesis that the mean contaminant 
concentration in samples from the site waste handling area is less than or equal to the mean con-
centration in background areas. 
 
 3.6.1.2  Background Test Form 2.  Tests the null hypothesis that the mean contaminant 
concentration in samples from the site waste handling area exceeds the mean concentration in 
background areas by more than a specified margin (e.g., by 50 ppm). 
 
 3.6.2  Before continuing with this approach, investigators need to be certain that these 
tests are applied to random sample data sets collected from both the site and background loca-
tions. Typically, site sampling may have a component of judgmental sampling, meaning samples 
were biased to expected contaminated areas of a site. In such cases, the background testing can-
not be applied. 
 
 3.6.3  The project planning team should establish which form of background testing will 
be applied at the onset of the RI planning process. In addition, the planning team needs to estab-
lish the levels of acceptable levels of error in the decision-making. This will differ from site to 
site, and will depend on the desires of the project planning team members. 
 
 3.6.4  The USEPA guidance also provides examples for the application of test methods 
that may be applied to the background test forms (EPA/540-R-01-003; Table 3-1). These are: 
 
 3.6.4.1  Descriptive Summary Statistics.  These (e.g., mean, median, standard deviation, 
variance, percentiles—see Appendix D) may be used as a preliminary screening tool for com-
parison with site history and land use activities in the establishment of background. EPA consid-
ers these “simple and straightforward [but having low] statistical rigor.” 
 
 3.6.4.2  Simple Comparisons.  These (i.e., greater than maximum) may be used with very 
small data sets. This approach is not recommended. 
 
 3.6.4.3  Parametric Tests.  These (e.g., Student t-test–see Appendix F) may be used if a 
larger number of data points is available (n > 25). EPA states that parametric tests require ap-
proximate normality of the estimated means and recommends that, for smaller data sets, investi-
gators examine data for normality or lognormality in distribution. EPA considers this application 
statistically robust enough to be used frequently in parametric data analysis. 
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 3.6.4.4  Nonparametric Tests.  These (e.g., Wilcoxon Rank Sum Test—see Appendix M) 
may be used when data are not normally distributed, as rank-ordered tests make no assumption 
on distribution. Again, EPA considers this approach statistically robust and to be used frequently 
in background estimation. 
 
 3.6.5  The list of methods is not complete, but, by reviewing the appropriate Appendix, 
users of this Manual may identify the most appropriate statistical method for site application. 
USEPA guidance leans heavily toward parametric and nonparametric tests, which in turn rely on 
establishing whether data are normal or lognormal (see Appendix F). 
 
 3.6.6  The U.S. Department of the Navy (DON) also developed statistical guidance for 
evaluating background in soils (UG-2049-ENV). Like the USEPA method, the guidance sug-
gests comparative methods for testing whether site data differ from background. However, DON 
guidance is unique, in part, because it also relies on geochemical relationships. UG-2049-ENV 
provides guidance for evaluating the geology of the site and the geochemical characteristics of 
site soils as they relate to background analyses. The procedures outlined in UG-2049-ENV can 
be quite useful for USACE projects and are recommended as a resource for additional reading. 
 
 3.6.7  This “geochemical method” is often used when reference area data are not avail-
able. The method may be used to extract background concentration ranges by evaluating corre-
lated background chemicals using on-site data only (i.e., no background area need be sampled). 
The key concept is that if the site has not been affected by a release, then only one population ex-
ists at a site; if a release has affected the site, then overlapping of different population character-
istics would be evident in the data. 
 
3.7 Simple Background Comparison.  Investigators are more likely to rely on regional 
background at the SI stage than the RI. As the text below states, site-specific background is more 
desirable, but SI project budgets rarely allow for a full background study and such regional com-
parisons are still useful. Background concentrations are typically not known prior to RI activi-
ties, and sampling for background should be scoped in the planning stages of the RI. In some 
instances, background criteria are available as regulatory limits, as Case Study 3 illustrates. (Al-
though the case study could also apply in an SI [Chapter 2], it is presented here to illustrate the 
concepts that arise for background comparisons all in one section of this document.) 
 
3.8 Case Study 3—Comparison to Regional Background.  Site-specific background con-
centrations are typically not known prior to RI activities, and sampling for background should be 
scoped in the planning stages of the RI. In some instances, regional background values may be 
compared to site data.   
 
 3.8.1  Texas has established soil background levels that can be used in the screening 
process if site-specific background levels are not available. Soil data from one site proposed for 
redevelopment were compared to Texas background levels. Texas regulation states that if the 
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maximum concentration of the chemical under investigation does not exceed the Texas soil 
background level, then that chemical is not of concern. The site analytical data were reviewed for 
quality and applicability. Based on the review, the project team was satisfied that the site analyti-
cal data were of sufficient quality for use in evaluating the site. The soil analytical data (in 
mg/kg) for chromium were: 
 

6.17 4.31 4.38 6.07 5.68 
2.86 5.08 4.98 2.22 15.30 
4.75 3.56 4.48 3.46 2.63 

 
 3.8.2  The maximum concentration for chromium at the site is 15.30 mg/kg. The Texas 
soil background level for soil is 30 mg/kg. Therefore, chromium would not be a chemical of con-
cern at the site. 
 
 3.8.3  As indicated in the USEPA guidance, such a comparison lacks statistical rigor, but 
is useful for guiding the project planners in the next phase of investigation. 
 
 3.8.4  At this stage, the comparison to regional background is merely sufficient to pro-
ceed to additional phases of site chromium evaluation.  
 
3.9 Parametric and Nonparametric Tests.  In the preceding case study, the regulatory com-
munity established background concentrations. It is far more desirable for local background lev-
els to be assessed and applied. Differences related to sample medium, sampling method, or 
analytical method are less likely to arise in site-specific background data than regional back-
ground data. However, the project must be budgeted for a sufficient number of samples to char-
acterize site-specific background conditions; a large number of samples may be required to 
characterize heterogeneous background media. If the regional background data (e.g., the back-
ground data from a very limited site-specific background study) are shown to be statistically dif-
ferent from a waste site, it may also be attributable to differences in water quality or soil types 
between the site and the location where the regional background data were collected, and not 
necessarily related to a waste release. Therefore, a thorough evaluation of local background con-
ditions is preferred to the use of regional background levels. 
 
 3.9.1  Instructions and guidance for selecting analytical procedures as part of DQOs 
should be applied to the background data set with the eventual uses of background data in mind. 
For statistical comparison, background measurements need to be random. In addition, the power 
of statistical comparison may be greater if the background results are normally or lognormally 
distributed. Although the distribution of background measurements cannot be guaranteed, either 
random or systematic sampling of background should be a component of the sampling plan. 
(Note that given spatial correlation, systematic samples spaced closer than the geostatistical 
range may not be independent. Sampling methods are addressed in Appendix C.) Once a set of 
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background samples have been collected, comparison methods are applied using the statistical 
procedures addressed in Appendix M or N. 
 
 3.9.2  A random sampling* design is typically used to characterize the background study 
area. Two-sample statistical tests* are then typically used to compare the site data set to the 
background data set. Two-sample tests, described in Appendix M, are summarized in Table 3-1. 
 
 3.9.3  An example of determining COPCs using background population tests is presented 
in case study 4. 
 
Table 3-1 
Background Population Comparison 

Percent Detections in Site 
Data 

Percent Detections in Back-
ground Data 

 
Test 

0–100 0 No comparison 
> 0–100 < 10 Poisson UTL 
10–50 10- 50 Test proportions 
> 50 > 50 Mann-Whitney test, 

85–100 85–100 Student’s t test* or Mann-Whitney test 
*Student’s t test should be used if the distributions in the site and background data sets are the same; otherwise, 
the Mann-Whitney test should be used. 

 
3.10 Case Study 4—Establishing and Comparing Background Concentrations to On-site 
Data.  At a military installation in Utah, samples were collected for metals in soil—seven on site 
and four at background locations. This case study focuses on chromium. The chromium results 
were as follows (mg/kg): 
 

SS01 SS02 SS03 SS04 SS05 SS06 SS07 BKG1 BKG2 BKG3 BKG4
 4.3  2.7  2.2  3.2  <1  3.6  2.4  1.6  1.8  2.6  1.6 

 
 3.10.1  Because the site data had an 85% detection rate, one-half the reporting limit was 
substituted for each non-detect for the statistical calculations. 
 
 3.10.2  Both background and site data were determined to be normally distributed at a 
90% confidence level. An F-test was used to compare the variance of the background data set to 
the variance of the site data set. The result of the F-test indicated that the variances are equal. 
 
 3.10.3  Thus, a two-sample t-test (with equal variances) was used to compare the back-
ground and on-site data sets. At the 95% confidence level, the calculated p = 0.172. Based on 
this evidence, a statistical difference between background and on-site data could not be demon-

                                                 
* Appendix C. 
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strated at the 95% level of confidence; thus, no further action with respect to chromium was re-
quired. Note that, for this simple example, the conclusion of “no further action” is drawn because 
a statistical difference was not obtained. The power of the test is normally calculated when the 
null hypothesis is not rejected. Additional investigation would be required if the power was not 
adequate. 
 
3.11 Upper Tolerance Limits.  Upper tolerance limits* (UTLs) are sometimes used to deter-
mine whether site concentrations are elevated relative to background concentrations. The UTL 
defines a threshold value for the background data set. (More accurately, it is an upper confidence 
limit for some percentile of the background data.) Individual site contaminant concentrations are 
compared to this value. Study area detections that are greater than the background UTL are con-
sidered to be indicative of contamination from site-related waste handling activities. Tolerance 
limits are used in this manner in the USEPA guidance for the statistical treatment of groundwater 
monitoring data (EPA 530-SW-89-026, EPA 9285.7-09A). However, this approach must be used 
with caution. In particular, it is often erroneously concluded that site-related contamination exists 
if a single detection exceeds the UTL. For example, the “95% UTL” is typically used to evaluate 
site contamination relative to background. If the background and site concentrations are not dif-
ferent from one another, we will be 95% confident that at least 95% of all site measurements will 
fall below the 95% UTL with coverage of 95%. (For brevity, this is often referred to simply as 
the “95% UTL.”) Therefore, we would expect a small percentage of site measurements to exceed 
the UTL, even when overall site contamination is not elevated relative to background. When a 
large number of samples are taken, we should not definitively conclude that a small number of 
detections greater than the UTL necessarily indicate site-related contamination. 
 
 3.11.1  Furthermore, regulators have criticized the use of UTLs to compare site to back-
ground contamination because UTLs do not minimize false negatives but, rather, minimize false 
positives. In other words, if many detected study area concentrations were greater than the back-
ground UTL, this would constitute strong evidence of site-related contamination. This scenario 
would be unlikely if the site and background concentrations were similar. Alternatively stated, 
the probability of a false positive—erroneously concluding that the site is contaminated relative 
to background—would be low. However, if detected site concentrations were less than the UTL, 
strictly speaking; no conclusion would be possible. This would not be sufficient to demonstrate 
the absence of site contamination relative to background. If we were to conclude the absence of 
site-related contamination using the UTL, false negatives could result (i.e., erroneously conclud-
ing that site concentrations are not elevated relative to background concentrations).  
 
 3.11.2  Because of the problems with tolerance intervals discussed above, two-sample 
statistical tests are usually preferred (and are typically more appropriate) to compare site and 
background data sets. It is recommended that UTLs be used only when two-sample tests are not 
practical (or when the primarily objectives is to demonstrate that site contamination is elevated 
                                                 
* Appendices G and K. 
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relative to background contamination). For example, a two-sample statistical test cannot be per-
formed when the site data set is extremely small (when only one or two samples are available for 
the study area). If a large data set was available for the background study area (e.g., because a 
“site wide” background study had been done for a prior investigation), then the study area results 
could be compared to the background UTL. 
 
 3.11.3  The UTL background comparison methods are discussed Appendix K. These 
methods are summarized in Table 3-2 
 
 3.11.4  There are parametric UTLs and non-parametric UTLs. The parametric UTL re-
quire the data to follow a specified distribution such as a normal or lognormal distribution. (Dis-
tribution tests are addressed in Appendices F and J.) As shown in the table above, the proportion 
of non-detects must be taken into account when selecting an appropriate UTL. (UTLs that rely 
upon the normality assumption cannot be calculated when a large portion of the data are reported 
as non-detect.) The nonparametric UTL represents a high-end value in the distribution. The fol-
lowing case study illustrates an example of calculating background UTLs for metals. 
 
Table 3-2 
Background Comparison to Evaluate the Extent of Contamination 

Percent Detections in Background Data Type of UTL Calculated 
0 No UTL calculated 
< 10 Poisson UTL 
10–85  Nonparametric UTL 
≥ 85 (normal or lognormal distribution) Parametric UTL 

 
3.12 Case Study 5—Calculating Background UTLs for Metals.  At a site in Utah, 56 soil 
samples were collected across a very large area to determine background concentrations for met-
als. 
 
 3.12.1  Chromium was detected above the detection limit in every sample, so there was 
no need to substitute for censored values. Manganese was not detected in one sample, and the 
geochemist elected to substitute one-half the detection limit for the censored value in that sam-
ple. 
 
 3.12.2  The chromium data were normally distributed and the manganese data were log-
normally distributed.*  Refer to Appendices D, E, and I for a review of these concepts. 
 
 3.12.3  For chromium, the 95% UTL was calculated from the sample results using the 
formula: 
 

                                                 
* The Shapiro-Wilk test (Paragraph F-3) was used to test for normality at the 95% level of confidence. 
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 95% UTL x ks= +  . 
 
 3.12.4  For 56 samples, k equals 2.032. Chromium results for background had a mean ( x ) 
of 12.7 mg/kg and standard deviation of 5.1 mg/kg, so the UTL was 23.0 mg/kg. For manganese, 
the log of each sample result was taken prior to the calculation of the UTL. (The individual con-
centrations are not shown.) For the set of log-transformed results, the sample mean and standard 
deviation were 5.41 and 0.75, respectively. The log UTL for manganese was 6.93 (using the 
above equation). All comparisons for manganese should occur in “log space” (that is the loga-
rithm of the site manganese maximum would be compared to 6.93). (Alternatively, a minimum 
variance unbiased estimator of the manganese background concentration could be calculated us-
ing the methods described in Appendix E). 
 
3.13 Extended Background Example.  This paragraph illustrates the concepts of distribu-
tional assumptions presented in Appendix J through a case study.  
 
 3.13.1  Suppose surface soil samples (from 0 to 5 feet below ground surface) have been 
collected at Site A and a background location to evaluate chromium concentrations on site. Table 
3-3 presents the analytical results from samples collected at the site and background areas. All 
chromium concentrations were detected so no proxy concentrations are needed to evaluate the 
data. 
 
 3.13.2  Further, suppose the objectives of this data evaluation are to identify whether 
chromium surface soil concentrations on site: 
 
 3.13.2.1  Exceed regulatory threshold levels. 
 
 3.13.2.2  Exceed background concentrations, on the average. 
 
 3.13.3  Several statistical tests can be used to make such comparisons. A “one-sample” 
test can be used to compare the mean site chromium concentration to regulatory risk-based levels 
(Appendix L). A “two-sample” test can be used to compare the mean concentration of chromium 
at the site to the mean background concentration of chromium (Appendix M). A background 
value, such as a UTL, can be estimated for comparisons to individual site concentrations to iden-
tify if any one sample has a concentration higher than background. However, before any statisti-
cal tests can be done, distributional assumptions must be evaluated for each population (site and 
background) of data to determine which statistical test is most appropriate. The distributions are 
evaluated for normality (or log normality) using statistical tests and graphical plots. 
 
 3.13.4  Graphical displays are the first approach taken to evaluate the distribution of the 
data (Appendix J). Histograms, box-and-whiskers plots, and probability plots are all useful in 
identifying how data are distributed and answering questions such as—are the data symmetrical, 
what is the range of concentrations, are there any outliers that may unduly influence future dis-
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tributional tests, do the data seem to follow a normal distribution, and so on. Histograms, box-
and-whisker plots, and probability plots for the site and background data are provided in Figures 
3-3 and 3-4, respectively.  
 
Table 3-3 
Analytical Results for Chromium at Site A and Background Locations 

Site A Sam-
ple Location 

Top Depth 
of Sample 

Bottom 
Depth of 
Sample 

Chromium 
Concentration 

(mg/kg) 

Background 
Sample Loca-

tion 

Top 
Depth of 
Sample 

Bottom 
Depth of 
Sample 

Chromium Con-
centration 

(mg/kg) 
SB01 1 2 4.76 BG01 1 2 4.99 
SB01 4 5 4.42 BG01 4 5 4.35 
SB02 1 2 4.68 BG02 1 2 4.61 
SB02 4 5 4.82 BG02 4 5 4.83 
SB03 1 2 4.36 BG03 1 2 3.92 
SB03 4 5 4.37 BG03 4 5 5.09 
SB04 1 2 4.09 BG04 1 2 5.19 
SB04 4 5 4.14 BG04 4 5 4.54 
SB05 1 2 4.78 BG05 1 2 5.49 
SB05 4 5 4.94 BG05 4 5 4.3 
SB06 1 2 3.35 BG06 1 2 5.67 
SB06 4 5 3.08 BG06 4 5 4.16 
SB07 1 2 10.1 BG07 0.5 1 5.41 
SB07 4 5 18.5 BG07 2 2.5 4.98 
SB08 1 2 10.6 BG08 1 2 5.64 
SB08 4 5 4.87 BG08 4 5 4.98 
SB09 1 2 10.3     
SB09 4 5 5.51     
SB10 1 2 6.4     
SB10 4 5 4.13     
SB11 1 2 4.96     
SB11 4 5 4.96     
SB12 1 2 4.91     
SB12 4 5 4.89     

 
 3.13.5  These plots have been developed on the basis of the original data and the natural-
log transformed data, as it is common that environmental data follow either a normal or log-
normal distribution. Other less common transformations, such as the square root or inverse sine 
transformation, are not applicable in this case study because: 
 
 3.13.5.1  Chromium concentrations are continuous (values can be any number within a 
range of concentrations). 
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 3.13.5.2  Detected chromium concentrations are not rare events to warrant review of the 
Poisson distribution. 
 
 3.13.5.3  Chromium concentrations are not binomially distributed. 
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Figure 3-3.  Chromium in Site A. 
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Figure 3-4.  Chromium in background. 
 
 3.13.6  Based on just the plots in Figure 3-3, chromium at Site A does not appear to have 
a normal or lognormal distribution. The histograms for the original data and log-transformed data 
are not symmetrical, but are skewed. This is confirmed in the box-and-whiskers plots because the 
mean (the dotted line) is larger than the median (the solid line within the box) and the mean is 
even larger than the 75th percentile (the top part of the box). (If the data were normal, the mean 
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would be equal to the median.) As the mean is greater than the 75th percentile, this suggests that 
the mean is influenced by several considerably large concentrations. Outliers (each of point rep-
resented by an “X”) predominantly occur only in the upper portion (the top) of the box plots. 
Lastly, as the normal probability plots for the original data and log-transformed data are not lin-
ear, this gives additional evidence that the data are not normal or lognormal.  
 
 3.13.7  The chromium data distributions possess heavier right tails relative to a normal 
distribution. Note the extreme deviation from linearity (Appendix F) at the right-hand side of 
each normal probability plot (appearing as a series of points above the straight line). The super-
imposed line on the normal probability plots illustrates the line that concentrations follow when 
data are normally or lognormally distributed. This line is related to Filliben’s statistic in the sense 
that it provides a standard to compare the linearity of sample results. For these normal probabil-
ity plots associated with Site A, it is apparent that the data do not follow a normal or lognormal 
distribution. 
 
 3.13.8  The plots in Figure 3-4 show evidence that chromium for the background data set 
appears to follow a normal or a lognormal distribution. The histogram for the original data seems 
to be symmetrical, though the histogram for the log-transformed data is not as symmetrical. 
However, histograms can be misleading if the boxes (i.e., concentration intervals) are too large 
or too small; therefore, another type of plot, preferably a normal probability plot, should be con-
structed to determine whether the data are normally (or lognormally) distributed.  
 
 3.13.9  One of the most powerful statistical methods for testing normality is the Shapiro-
Wilk* test. Because the site data set has 24 sample results and the background data set has 16 
sample results, this test would be appropriate for evaluating normality and lognormality for both 
the site and background data sets. The result of the Shapiro-Wilk test is presented in Table 3-4 
for chromium at Site A and background based on the original data and log-transformed data. The 
Shapiro-Wilk test results in either a calculated value of the statistic W or the value p. There is ac-
ceptably strong evidence that the data set is not normal when either W or p is small relative to the 
corresponding acceptance limit for W or p. 
 
 3.13.10  For Site A, results of the Shapiro-Wilk test show evidence that the data do not 
follow a normal or lognormal distribution (i.e., since the calculated value of W is smaller than 
W0.01, or equivalently, p < 0.01, there is less than a 1% chance that the data set is normal, or 
equivalently stated, there is at least a 99% confidence that the data are not normal). However, for 
background the results of the Shapiro-Wilk test suggest that the data seem to follow both a nor-
mal and lognormal distribution. It should be noted that there is more evidence that background 
data are normally distributed rather than lognormally distributed, because the value of W and the 
associated value of p are higher for the original data than for the log-transformed data. 
 
                                                 
* Appendix F. 
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 3.13.11  The coefficient of variation* (CV) was estimated for each data set, and is pro-
vided in Table 3-4. A CV greater than 1 suggests a departure from normality. However, the 
evaluation of the CV is not as reliable as quantitative statistical tests for normality, such as the 
Shapiro-Wilk test. The coefficient of variation is useful only for identifying obvious departures 
from normality when CV is much greater than 1. Because the sample CVs for the site and back-
ground data sets based on the original data and the log-transformed data all are less than 1 (as 
discussed in Appendix F), one cannot conclude the data can be modeled by a normal distribution. 
Therefore, for these data sets, the CV does not provide any useful additional information. 
 
 3.13.12  Similarly, to illustrate the relative reliability of various distributional test meth-
ods, the Studentized range test* was also performed on the data sets. The results of this test (Ta-
ble 3-5) indicate that the Site A and background data sets follow normal and lognormal 
distributions. The range test failed to identify the lack of normality for Site A data. This hap-
pened because the data distribution for Site A is asymmetrical and this test does not perform well 
for asymmetrical distributions. However, according to the test, the background data follow a nor-
mal and lognormal distribution. Therefore, the Studentized range test for the background data set 
is consistent with the Shapiro-Wilk test, the coefficient of variation test, and the graphical plots 
(e.g., the normal probability and box plots). 
 
 3.13.13  Similarly, to illustrate the relative reliability of various distributional test meth-
ods, the Studentized range test* was also performed on the data sets. The results of this test (Ta-
ble 3-5) indicate that the Site A and background data sets follow normal and lognormal 
distributions. The range test failed to identify the lack of normality for Site A data. This occurred 
because the data distribution for Site A is asymmetrical and this test does not perform well for 
asymmetric distributions. However, according to the test, the background data follow a normal 
and lognormal distribution. Therefore, the Studentized range test for the background data set is 
consistent with the Shapiro-Wilk test, the coefficient of variation test, and the graphical plots 
(e.g., the normal probability and box plots). 
 
 3.13.14  To summarize, the background data appear to follow both a normal and log-
normal distribution, but Site A data do not appear to follow either a normal or lognormal distri-
bution. A dilemma exists regarding the distribution of the background data—is it normal or 
lognormal? As the log transformation did not appreciably improve the normality of the data set, 
it would be advisable not to perform the transformation. 
 
 

 

                                                 
* Appendix F. 
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Table 3-4 
Results of the Shapiro-Wilk Test of Normality and Lognormality for Chromium Surface Soil at Site A and Background 

Critical Values  
(from Table B-20 of Appendix B) 

Area 
Testing for Nor-
mality or Log-

normality? 

Number of 
Results CV 

Shapiro-Wilk 
Test Statistic, 

W 

Critical Value 
based on 0.05 
level of signifi-
cance, 05.0W  

Critical Value 
based on 0.10 
level of signifi-
cance, 10.0W  

Critical Value 
based on 0.50 
level of signifi-
cance, 50.0W  

p value for 
Shapiro- 
Wilk Test 
(from sta-

tistical soft-
ware) 

Conclusion: Is 
there evidence 

that the data are 
Normally or 
Lognormally 
Distributed? 

Yes/No 
Site A Normality 24 0.5687 0.627 0.916 0.930 0.963 <0.0001  No 
Site A Lognormality 24 0.2426 0.791 0.916 0.930 0.963 0.0002 No 

Background Normality 16 0.1093 0.963 0.887 0.906 0.952 0.7177 Yes 
Background Lognormality 16 0.07041 0.958 0.887 0.906 0.952 0.6308 Yes 

 
 
Table 3-5 
Results of the Studentized Range Test of Normality and Lognormality for Chromium Surface Soil at Site A and Background 

Test of Normality (based on original data) Test of Lognormality (based on log-transformed data) 

Area 
Number 
of Re-
sults 

Ratio of Range 
of Results and 

Standard Devia-
tion 

Critical Values from 
Table B-21 of Ap-

pendix B, assuming a 
0.05 level of signifi-

cance 

Conclusion: Is there 
evidence that the 

data are Normally 
Distributed? 

Yes/No 

Ratio of Range of 
Results and Stan-

dard Deviation 

Critical Values from 
Table B-21 of Appendix 
B, assuming a 0.05 level 

of significance 

Conclusion: Is there 
evidence that the 
data are Lognor-

mally Distributed? 
Yes/No 

Site A 24 4.586 (3.308, 4.666)* Yes 4.400 (3.308, 4.666)* Yes 
Background 16 3.278 (3.01, 4.24) Yes 3.317 (3.01, 4.24) Yes 
 

*Critical Values for n = 24 are based linear interpolation of critical values from n = 20 and n = 25. 
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 3.13.15  If a background value, such as a UTL, and other summary statistics are desired 
to characterize the background data set, then the assumed distribution should fit the data as much 
as possible. With respect to this objective, it would be more appropriate to define background as 
following a normal distribution because the Shapiro-Wilk test shows more evidence of normality 
than lognormality. Comparing the Shapiro-Wilk test’s critical value or associated p value from 
the original data and from the log-transformed data is a reasonable approach for discerning 
which distribution is more appropriate and has more evidence of following a normal or log-
normal distribution. 
 
 3.13.16 The first objective for this case study is to determine whether chromium contami-
nation at Site A, on the average, exceeds a regulatory threshold value. As it cannot be assumed 
that the Site A data set is either normal or lognormal, a nonparametric test (e.g., the Wilcoxon 
signed rank test for the median as discussed in Appendices H and M) must be used to compare the 
Site A data to the regulatory threshold. 
 
 3.13.17  The second objective is to determine whether chromium exceeds background. 
Though the background data set could be reasonably assumed to be either normal or lognormal, 
this assumption could not be made for the Site A data set. As the Site A data set is neither normal 
nor lognormal, a parametric two-sample test* cannot be used to compare the Site A data set to 
the background data set (for example, to determine if the mean concentration at Site A exceeds 
the mean background concentration). Both data sets must follow the same distribution to use a 
parametric test. For example, both the background and site data sets must both be normally or 
lognormally distributed. As data from Site A does not follow a normal or lognormal distribution, 
only nonparametric tests such as the Wilcoxon rank-sum test* can be used to compare the Site A 
and background data sets. 
 
 3.13.18  This case study illustrates the value of background data in project decision-
making. The application of background data in identifying contaminants for inclusion in the risk 
assessment is presented in the following section. The data in the preceding discussion may be 
used as sample data to apply some of the nonparametric tests in Appendix M. 
 
Section III 
Risk Assessment 
 
3.14 Introduction.  Perhaps more than any other area in the CERCLA project life cycle, as-
sessing site risk relies on statistics. Many of the techniques described in several of the appendices 
apply in quantifying and assessing risk at a hazardous waste site. The components of a risk as-
sessment discussed in this report are: 

                                                 
* Appendices M and N. 
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• Identifying contaminants of potential concern (COPCs). 
• Calculating exposure point concentrations (EPCs). 

 
Statistics enter into risk assessment in one additional major area—the calculation of exposure 
levels. Specifically, a baseline human health risk assessment requires estimation of a reasonable 
maximum exposure (RME), and a central tendency exposure (CTE). The former relies on 95% 
upper confidence level (UCL) values for exposure parameters, and the latter on the mean of the 
exposure parameters. In either case, the exposure parameters are generally provided by EPA 
guidance, such as the Exposure Factors Handbook (USEPA, 1997). For all practical purposes, 
the environmental scientist will not need to statistically evaluate these parameters and, conse-
quently, their derivation is not discussed here. However, understanding the concepts presented in 
Appendix E is very useful in deconstructing the data evaluations presented in the Exposure Fac-
tors Handbook (USEPA, 1997). 
 
 3.14.1  Identification of Contaminants of Potential Concern for Risk Assessment. Not all 
chemicals detected at a site are typically included in the quantification of risk. Those chemicals 
retained in the risk assessment are the COPCs. Note that the COPCs are media-specific; COPCs 
are evaluated for air, surface soil, subsurface soil, groundwater, sediment, surface water, and any 
other medium sampled in the RI at each site. 
 
 3.14.1.1  Chemicals are typically screened against background or other criteria (estab-
lished by ARARs) and a subset is selected for inclusion in the risk calculations. Some of the 
screening criteria, other than background levels, include drinking water MCLs, or secondary 
MCLs, RBCs, and Toxic Substance Control Act (TSCA) values for PCBs (polychlorinated bi-
phenyls) in soil. In addition, inorganics that are essential human nutrients (e.g., iron, potassium, 
magnesium, sodium, and calcium) may be excluded from the quantitative risk analysis in most 
cases. (ARARs are identified in the planning stage of the RI.) 
 
 3.14.1.2  Both qualitative and quantitative statistical evaluations are frequently performed 
to identify COPCs. A qualitative evaluation is initially conducted to determine whether select po-
tential analytes of concern can be eliminated from future investigation; a statistical evaluation is 
subsequently done for a more in-depth look at of contaminants that were not eliminated during 
the qualitative assessment. 
 
 3.14.1.3  For example, for the qualitative evaluation of the data, if a chemical is detected 
infrequently in the sample data set, and is not considered to be associated with historical waste 
handling at a site, it may be screened out as a COPC. However, it is essential to use site-specific 
information before discarding such a chemical, as infrequently detected compounds may also 
represent hot-spots, depending on the sampling strategy used at the site. For every chemical de-
tected at least once, the maximum detected concentration is compared to the chemical- and  
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medium-specific screening criterion. Chemicals with higher concentrations than their criteria are 
generally retained for quantitative evaluation in the risk assessment.  
 
 3.14.1.4  Contaminants that lack ARARs (usually because toxicity information does not 
exist) are retained as COPCs in the risk assessment and discussed in the uncertainty section of 
the report. One-sample tests for contaminants where the maximum exceeds the risk-based 
screening limit may be used to determine whether the mean is statistically less than the screening 
limit, even though a single value exceeds the screening limit. Anthropogenically derived con-
taminants (such as PAHs) that occur at concentrations below background levels are still retained 
in the risk assessment if they exceed ARARs. If the risk assessment indicates that such contami-
nants are a primary contributor to total risk at a site, then a quantitative statistical comparison 
with background (e.g., using appropriate two-sample statistical tests) would be done and the re-
sults would subsequently be discussed in the risk characterization at the end of the assessment. 
 
 3.14.2  Calculating Exposure Point Concentrations.  For risk assessment, means and 
standard deviations are typically calculated as the basis for EPCs and as the basis for deriving 
UTLs for the background comparisons. However, the mean and standard deviation will fre-
quently be inappropriate measures of central tendency and dispersion when the data are not nor-
mally distributed or a large portion of the data consists of non-detects. Under these 
circumstances, means and standard deviations should not be used to perform statistical evalua-
tions. Before statistically valid means and standard deviations can be calculated, tests for normal-
ity should be conducted and non-detects must be appropriately addressed. 
 
 3.14.2.1  The EPC is used to calculate a COPC’s carcinogenic risk and non-carcinogenic 
hazard index. It represents the concentration a receptor is likely to encounter. The USEPA re-
quires the EPC to be a conservative estimator of central tendency—the 95% upper confidence 
limit (UCL) of the sample arithmetic mean concentration (OSWER 92-856-03, EPA 68-W0-
0025). The 95% UCL is the concentration that, when calculated repeatedly for randomly drawn 
samples, equals or exceeds the true mean 95% of the time. 
  
 3.14.2.2  Calculating rigorous, statistically valid 95% UCLs requires that data be distribu-
tion tested and that non-detects be treated properly. Procedures for this are provided in Appendix 
H. Some of the older (pre-2000) RCRA and CERCLA guidance for calculating the UCL are out-
dated (and hence, are not recommended); modifications and updates are provided with the goal 
of improving scientific defensibility. Appendix G presents the most recent acceptable methods 
for estimating the 95% UCL at 95% confidence. 
 
 3.14.2.3  Calculating EPCs at a CERCLA site brings together many of the statistical pro-
cedures described in the attached Appendices. The correct steps are, in general, as follows 
 
 3.14.2.3.1  Identify the nature of the censoring limit and the proportion of censored val-
ues and substitute proxy values as directed in Appendix R. 
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 3.14.2.3.2  Identify outliers as discussed in Appendices I and M. 
 
 3.14.2.3.3  Perform distribution testing as detailed in Appendix F. 
 
 3.14.2.3.4  Depending on the outcome of these steps, calculate the 95% UCL as directed 
in Appendix G. 
 
 3.14.2.4  Unfortunately, there are many pitfalls along the way, and this process does not 
always lead to a simple result. In part, this is attributable to the use of or adherence to older 
USEPA guidance. In particular, USEPA guidance for substituting for censored data is addressed 
in many separate risk assessment documents. In earlier documents, substituting one-half the de-
tection limit is supported. Appendix E provides insight on the deficiency in this approach. In ad-
dition, even if the risk assessor has performed all of the statistical procedures, USEPA guidance 
for EPCs states that if a 95% UCL exceeds the maximum value of a compound detected at a site, 
the maximum should be substituted. This has the dissatisfying attribute of being completely ad 
hoc, giving rise to unquantifiable and unacceptable uncertainties for risk assessment decisions. 
 
 3.14.3  Uncertainty Quantification.  A required element in a baseline human health risk 
assessment is to evaluate uncertainty for decisions. Statistical techniques alone will be unable to 
account for all sources of uncertainty in a risk assessment and a qualitative approach is normally 
taken. For example, there will be uncertainty in the risk assessment for analytes for which toxic-
ity data do not exist, and the quantification of such uncertainty is not possible. 
 
 3.14.3.1  In risk assessment, uncertainty stems primarily from the following three 
sources. 
 
 3.14.3.1.1  Errors in the estimate of contaminant concentration. 
 
 3.14.3.1.2  Errors in the estimate of toxicity. 
 
 3.14.3.1.3  Errors introduced by large numbers of assumed values in the risk assessment 
formulations, which are by definition and intent very conservative. 
 
 3.14.3.2  In practical terms, there is little that can be done about the uncertainty in esti-
mates of toxicity. The studies upon which toxicity data are based are taken “as is” simply be-
cause of the scarcity of available studies. Uncertainty in the assumptions employed in the risk 
assessment can sometimes be addressed, but only to a limited extent. An example for how the 
uncertainties listed in subparagraph 3.14.3.1.3 were taken into account is presented in Case 
Study 6. 
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 3.14.3.3  Most statistical evaluations implicitly assume the absence of bias. The uncer-
tainty predominantly depends on the distribution of field measurements. Even in the case of risk 
screening, as demonstrated in Chapter 2, we have seen that it is possible to qualitatively assess 
the uncertainty of individual sample/analytical results before comparing those results to fixed 
threshold values using analytical QC information. For example, QC data can potentially be used 
to identify the direction of bias and to estimate the magnitude of the bias associated with a set of 
analytical results. This is illustrated in Case Study 6. It is also possible to make similar estimates 
of variability which may affect decision-making, as illustrated in Case Study 7. 
 
 3.14.3.4  The error introduced into the risk assessment by the uncertainty associated with 
each of the various assumptions and reference values is more likely multiplicative rather than 
additive, such that the calculated risk is conservative to an extraordinary degree. Consider, for 
instance, some components of a soil dermal absorption scenario. The risk assessor calculates an 
EPC, which represents the 95% UCL of the mean. Then, the skin area exposed to the contami-
nant is based on an upper 95% confidence level of all the U.S. adult population from EPA 
OSWER 92-856-03. These are combined with, say, the default average exposure duration and 
frequency values which, again, are upper estimates from some population. Combining all of 
these upper estimates results in a risk evaluation that has a far higher confidence than 95%. The 
Risk Assessor and Project Manager are encouraged to identify every opportunity to use site-
specific values in place of assumptions in risk assessment to reduce uncertainty in the results 
and, thus, more appropriately apply the limited remediation resources available. 
 
 3.14.3.5  One method for estimating the true mean and distribution of risk estimates is to 
use the recommended RME and CTE values of exposure parameters. This methodology is rec-
ommended in Risk Assessment Guidance for Superfund (RAGS). The result of looking at each 
input parameter using the CTE is to provide an estimate of risk near the mean of the estimated 
exposure scenario. The RME is considered to represent an upper estimate of site risk. An alterna-
tive method of quantifying the range in risk estimates is to use Monte Carlo simulations. 
 
3.15 Case Study 6—Refining Risk Assessment Assumptions.   
 
 3.15.1  A risk assessment was to be done as part of a RCRA Facility Investigation (RFI) 
at a steel mill in Pennsylvania. The project team approached the EPA Remedial Project Manager 
(RPM) regarding using site-specific assumptions for some of the exposure factors in the risk as-
sessment calculations. This was possible because the facility maintained excellent records of 
employee longevity, promotion, and work assignments. For this case study, the focus is on site-
specific estimates of exposure duration, which enters into quantification of risk. 
 
 3.15.2  Under the assumptions given by the EPA for the worker exposure scenario in 
OSWER 92-856-03, the risk assessor is to assume that a given worker will be exposed for a pe-
riod of 25 years. However, by reference to detailed employee records for the facility, the project 
team was able to demonstrate concretely on a facility-specific, job-specific, and location-specific 
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basis, the actual average lifetime exposure duration for the various site areas under study. Em-
ploying these actual values, which were approximately 3 to 5 years rather than 25 years, greatly 
reduced the exposure duration. More importantly, the site-specific value reduced the uncertainty 
in the calculated lifetime risk. Using this lower value allowed the steel mill owner to limit the 
number of site areas proceeding to the Corrective Measures Study phase of the project. 
 
3.16 Case Study 7—Direction and Magnitude of Bias.  As part of a property transfer in Bal-
timore, Maryland, the project team was asked to estimate reserves that the seller would have to 
put in escrow against the potential need for site clean-up, before the seller would accept transfer 
of the property. For this case study, petroleum hydrocarbon contamination will be discussed. 
 
 3.16.1  The project team decided to divide the relatively small site into four quadrants 
and collect one composite sample from each to assess the potential need for remediation in each 
quadrant. The analytical results obtained from the laboratory were as follows: 
 

Quadrant 1 1200 mg/kg Quadrant 3 756 mg/kg 
Quadrant 2 101 mg/kg Quadrant 4 138 mg/kg 

 
 3.16.2  With the state’s action level set at 100 mg/kg, it appeared that the seller would be 
required to reserve funds against a potential soil removal for the entire site. However, a review of 
the quality control data associated with the analytical results displayed significant potential bias. 
 
 3.16.3  A normal calibration curve was developed for the gas chromatograph used in the 
analysis that met method criteria for linearity. The laboratory then analyzed an Initial Calibration 
Verification (ICV) using a standard from an alternative source from that employed in the calibra-
tion. The ICV was essentially a blank spike set at the midpoint of the calibration curve. The re-
sult of this analysis was a percent recovery (%R) of 168%, which was within the acceptance 
limits provided with the standard by the manufacturer. 
 
 3.16.4  However, in its simplest form this QC result indicates that if the laboratory intro-
duced the equivalent of 100 mg/kg of total petroleum hydrocarbons (TPH) into the analytical 
system, they would get a reported result of 168 mg/kg. This observation, applied to the results 
reported for the site, removed two of the four quadrants from further consideration, reducing the 
required reserves by half.  
 
Section IV 
Probabilistic Risk Assessments Monte Carlo Simulations 
 
3.17 Introduction.  The implementation of probabilistic risk assessment for environmental 
projects is beyond the scope of this document; however, a brief overview of the procedures is 
presented here. Monte Carlo simulation, the most common technique used for probabilistic as-
sessments, is a statistical technique in which outcomes are produced using randomly selected 
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values for input variables that possess a range of possible values. In some cases, a known prob-
ability distribution can be assigned to each input variable. By repeating the calculation many, 
many times, Monte Carlo simulations create a population of results representing (in theory) the 
full range of possible outcomes and the likelihood of each. For example, when Monte Carlo 
simulation is used in risk assessment, risk is expressed as a distribution of possible values rather 
than a single point value.  
 
 3.17.1  There are two major practical limitations to the application of Monte Carlo simu-
lations in general: i) it can be costly, and ii) few people are sufficiently qualified to do it. The 
EPA has also written a guidance document for probabilistic risk assessment titled RAGS Volume 
3 Part A: Process for Conducting Probabilistic Risk Assessment (EPA 540-R-02-002) available 
at http://www.epa.gov/oswer/riskassessment/rags3a/index.htm. An EPA Region 3 publication 
(EPA 903-F-94-001) identified several technical limitations that preclude the Agency from rely-
ing on Monte Carlo simulations (http://www.epa.gov/reg3hwmd/risk/human/info/guide1.htm). 
 
 3.17.1.1  Software is unable to distinguish between measurement variability and lack of 
knowledge. Some input parameters are for well-described differences among individuals—these 
differences are variability. Other factors, such as frequency and duration of trespassing, are sim-
ply unknown, and assuming a distribution for them is ad hoc. But the simulated distribution of 
unknowns is presented in computer output as variability. The accuracy of the distributional as-
sumptions limits the accuracy of the simulation. 
 
 3.17.1.2  Software is unable to account for sample dependency (e.g., spatial and temporal 
correlations for sample locations). However, this limitation also applies to all classical statistical 
methods (e.g., the methods predominantly discussed in this document and in EPA environmental 
statistical documents such as the QA-G4 and GA-G9 guidance documents). In classical statistics, 
the assumption of independence highly influences the applicability of a technique—the same 
limitation applies here. 
 
 3.17.2  In most statistical evaluations (excluding geostatistics), environmental scientists 
are resigned to the limitations of classical statistics for environmental data. The same is true for 
Monte Carlo simulations. Though Monte Carlo simulations require sample independence, the 
approach can be advantageous. The primary advantage is that it accounts for a range of input 
values and outputs a range of outcomes (such as risk values) with associated probabilities. Al-
though a Monte Carlo approach is currently not recommended or required by the EPA, the ap-
proach may be beneficial for some projects. There are applications of such simulations. 
Moreover, future scientists may learn how to overcome some of the limitations and eventually 
develop reasonable and inexpensive computer applications. 
 
 3.17.3  Applications of Monte Carlo simulation are more prevalent in groundwater mod-
eling than any other current environmental application. Case Study 8 shows how a Monte Carlo 
simulation of groundwater contamination was used to perfect a remedy. 
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3.18 Case Study 8—Monte Carlo Simulation in Remedial Alternative Selection 
 
 3.18.1  Monte Carlo analysis was coupled with decision tree analysis for a study site in 
Nebraska where the groundwater was contaminated with trinitrotoluene (TNT). The extent of 
TNT contamination was characterized during an RI. Three pump-and-treat alternative remedial 
actions were developed for the FS. The maximum concentration of TNT remaining in the satu-
rated zone at the end of each alternative project lifetime was determined stochastically using a 
Monte Carlo model. The Monte Carlo model randomly generated values for site information for 
initial mass concentration, hydraulic conductivity, and retardation coefficient. Then these ran-
domly generated fields were sampled and the output was combined into sets or ensembles. Prob-
ability functions were fitted to the output ensembles with the maximum simulated TNT 
concentrations. Because each of the treatment alternatives was associated with a different set of 
possible maximum concentrations, the Monte Carlo simulation made it possible to identify the 
optimal alternative quantitatively by analyzing the output ensembles for each alternative. 
 
 3.18.2  Applying Monte Carlo simulations requires the technical support of a specialist in 
this area; detailed methodologies are beyond the scope of this Manual. The technique does rely 
on the power of randomly generated data sets and the optimization of conditions based on the 
simulation. 
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CHAPTER 4 
Remedial Design and Remedial Action 

 
4.1 Introduction.  During the RD/RA phase, engineers develop detailed designs for remedial 
actions, construct remediation systems, and operate and monitor sites with long-term remedies in 
place. The term remedial system is defined here in a broad sense; it includes removal actions and 
capping as well as more active treatment systems. 
 
 4.1.1  A number of statistical approaches that are applicable for prior stages of a project’s 
life cycle are also applicable for the RD/RA. This Chapter will address environmental statistical 
applications for the RD/RA that have not been highlighted for the PA, SI, or RI/FS. In this 
Chapter, we consider adaptive sampling plans for removal actions and groundwater monitoring 
and trend analysis.  
 
 4.1.2  Although groundwater is most commonly subject to long-term monitoring, the 
same tools can be used to monitor and optimize remedial systems for other environmental media 
or demonstrate achievement of site closure criteria. 
 
4.2 Comparisons to ACLs and MCLs.  Confirmation sampling is often performed for the 
RD/RA and would typically entail one-sample statistical tests. These would be the same types of 
tests that would be conducted during the SI and RI, only the nature of the decision limits would 
differ (e.g., the decision limits for the RD/RA would be “cleanup goals” rather than the risk-
based screening concentrations as in the SI). 
 
 4.2.1  As an example, consider data collected at a landfill. If a statistically significant 
difference is observed between upgradient and downgradient concentrations, a compliance 
monitoring program must be put into place. According to RCRA regulations, analysis of Appen-
dix IX list constituents is required. Assuming that a release is confirmed, the facility must dem-
onstrate that the release does not present a health or environmental risk. Generally, this entails 
comparing analytical results to fixed threshold values, called Alternate Concentration Limits 
(ACLs), which are often established in a jurisdiction-specific fashion. An alternative approach is 
to compare site data to MCLs. In the first case, tolerance or confidence intervals are recom-
mended. In the second case, the tolerance limit is the preferred method.  
 
 4.2.2  An appropriate one-sample statistical test is to determine whether contamination 
exceeds the decision limit (e.g., an MCL). For example, if a set of measured contaminant con-
centrations is normal, a one-sample t-test could be used to compare the mean concentration to the 
decision limit. However, a reliable comparison using a one-sample test will not be possible if the 
data set is small (e.g., consists of only three points). If normality of the data set can be assumed, 
a conservative approach would consist of calculating an UTL and comparing it to the decision 
limit. If the UTL were less than the decision limit, there would be strong evidence that site con-
tamination does not exceed the decision limit. However, do not conclude that there is a contami-
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nation problem when the UTL exceeds the decision limit. To avoid false positives, when the UTL 
exceeds the decision limit, additional data should be collected to do an appropriate one-sample 
statistical test. 
 
 4.2.3  The confidence limit approach is used for comparisons to ACLs based on back-
ground data, whereas the tolerance limit approach is used when the comparison criteria are 
health-based and the comparisons are in relation to MCLs or health-based ACLs. The tolerance 
limit approach is more conservative than the confidence limit approach in that the UTL must be 
less than the MCL. However, Gibbons (1994) has pointed out the following.  
 
 4.2.4  Because at most four independent samples will be available during semiannual 
monitoring, the 95% confidence, 95% coverage tolerance limit is approximately five standard 
deviation units above the mean concentration. In light of this, even if all four semiannual meas-
urements for a given compliance are well below the MCL, the tolerance limit will invariably ex-
ceed the MCL or health-based ACL and never-ending corrective action will be required.  
 
 4.2.5  Thus, special care must be taken in the design of compliance monitoring programs 
to ensure that the facility is not caught in the kind of regulatory trap described above.  
 
 4.2.6  In addition to one-sample statistical tests, multi-sample statistical tests can be 
appropriate for the RD/RA to perform comparisons with background values. Since long-term 
monitoring is commonly performed for groundwater during the RD/RA, Figures 4-1 through 4-5 
summarize the types of one-sample and two-sample statistical tests that would be used for 
groundwater monitoring. 
 
Section I 
Groundwater Monitoring and Optimization Trend Analysis 
 
4.3 Introduction.  Monitoring remedial systems have significant, long-term costs. It is not 
difficult to anticipate that, over the course of 10 to 20 years, substantial economic resources 
available for environmental programs at military installations will be in long-term monitoring of 
sites actively under remediation or sites that require long-term monitoring. Project planners 
should ensure that these monitoring systems are optimized, and that they provide the necessary 
information at the least possible cost. Likewise, where active remediation is ongoing, optimiza-
tion is important to minimize economic impacts to the facility. While optimization is desirable, 
compliance is mandatory, and at most installations, groundwater monitoring is required under 
various permits or consent agreements. This section reviews various methods of assessing 
groundwater systems over time with a view to both detection and compliance, and optimization. 
 
4.4 Detection and Compliance Monitoring.  Detection monitoring is a means of identifying 
whether a regulated hazardous waste site is releasing hazardous materials into the environment. 
Compliance monitoring entails the repetitive, periodic sampling and analysis of a select set of 
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monitoring locations for compliance with a fixed set of standards or requirements. The standards 
to which analytical results are compared are generally specified in regulations, permits, or con-
sent agreements.  
 
 4.4.1  In detection monitoring, the results of sampling and analysis from a location that 
has recorded a release are compared to measurements from an unaffected or background loca-
tion. In the case of groundwater monitoring, this generally entails selecting one or more moni-
toring wells upgradient of the site and selecting a representative set of downgradient monitoring 
wells. If the difference between the two sets of results is statistically significant, the owner is 
usually required to begin compliance monitoring to investigate how the release is occurring and 
to remedy the situation. These statistics fall into the category of hypothesis tests, specifically 
two- or multiple-population tests, and are addressed in Appendices M and N. 
 
 4.4.2  The selection of the statistical approach is generally open to discussion with regula-
tors and the final determination will depend upon many factors. In general terms, the simplest 
approach (consistent with the requirements of local jurisdictions) is the best approach. For exam-
ple, for detection monitoring, a two-sample t-test could potentially be used to compare upgradi-
ent (background) to downgradient (site) contaminant concentrations. Under the best of 
circumstances, a straightforward, parametric t-test would suffice; however, in practical terms, it 
is rare that environmental data meet all of the conditions that would make such a straightforward 
approach viable. And, in fact, by the time Figure 4-2 was published in EPA 530-SW-89-026, the 
use of the t-test had been largely discredited for this application because it failed to adequately 
control false positives when multiple site and background comparisons are required. Clearly, as 
of the time of its publication, the 1989 guidance recommended the use of ANOVA techniques 
(essentially a generalization of the two-sample t-test), and, to a lesser extent, alternatives such as 
tolerance intervals, prediction intervals, and control charting. By 1992, with the publication of 
Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities—Addendum to In-
terim Final Guidance (EPA 68-W0-0025), a somewhat different statistical approach was high-
lighted. Preferences had shifted further with the use of intervals and resampling strategies 
receiving much greater attention. By 1994, when Gibbons published Statistical Methods for 
Groundwater Monitoring, ANOVA techniques had largely fallen out of use, replaced by 
prediction intervals with resampling strategies that have become, in some cases, very complex. 
This statistical approach currently represents what might be called the state-of-the-art for 
groundwater. 
 
 4.4.3  The alternative approach of using control charts has not gone altogether out of fa-
vor, however. A control chart is a type of plot (using data from a particular monitoring well) of 
some function of concentration (e.g., the mean concentration) versus time. The various statistical 
tests previously discussed are based on one of two possible approaches for detection monitoring. 
With the exception of the control chart approach, each new downgradient result is compared to 
the history (or historical data set) of upgradient results. These types of comparisons are called 
interwell (literally, “between well”) comparisons. A potential flaw in this approach is that it as-
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sumes the only variable that can make a difference between the upgradient and downgradient re-
sults is the intervening waste management unit. In reality, there are a number of other possible 
influences and, for this reason, intrawell (literally, “within well”) comparisons are still consid-
ered quite useful in groundwater monitoring applications. The classic method of performing 
these intrawell comparisons is with control charting. The two types of control charts normally 
employed for these purposes are the Shewart and cumulative summation (CUSUM) control 
charts, which are often combined in normal use.  
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Figure 4-1.  1989 EPA decision tree for groundwater monitoring. 
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Figure 4-2.  Statistical decision tree with options for groundwater monitoring—Part 1. 
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 4.4.4  Figures 4-1 through 4-5 present flow charts showing the options available and 
guidance on option selection. However, the decision regarding the type of statistical analysis 
program to employ should be made as part of the DQO development process for the monitoring 
effort. It is strongly recommended that the Project Manager involve a statistician in this process. 
 
 4.4.5  Case study 1 provides an example in which multiple techniques are used to assess 
groundwater monitoring data. Case study 2 provides an example of using a combined 
Shewart/CUSUM method to identify a release at a site. 
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Figure 4-3.  Statistical decision tree with options for groundwater monitoring—Part 2. 
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Figure 4-4.  Statistical decision tree with options for groundwater monitoring—Part 3. 
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Figure 4-5.  Statistical decision tree with options for groundwater monitoring—Part 4. 
 
4.5 Case Study 1—Groundwater Monitoring.  At a manufacturing facility in Virginia, a 
long-standing tetrachloroethene (PCE) plume is being hydrologically contained and treated with 
a combination of vapor extraction and groundwater pump-and-treat. The facility has been en-
gaged in long-term monitoring for over 20 years and uses a variety of techniques to assess permit 
compliance. Sample statistics allow the facility to determine whether remediation at the site is 
causing reductions in PCE concentrations. Table 4-1 presents an example of summary statistics 
and testing results in a fashion that is easily understood for both compliance and detection 
monitoring.  
 
 4.5.1  For compliance monitoring at wells with known past contamination (MW1 to 
MW4), increasing or decreasing statistical trends were determined at the 90 and 95% level of 
confidence, respectively, as negotiated with state regulators at the site. 
 
 4.5.2  Trend analyses, control charts, and tolerance limits are being used for the four 
wells under the category “Comp” and for the three wells under the category “Trend.” Typically, 
differing DQOs would be set for compliance and detection wells and only one set of statistical 
tests would be performed. However, the regulatory negotiations at this site mandated identical 
tests for both types of wells. (This example demonstrates an opportunity for improving past ne-
gotiated monitoring with regulators.) 
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 4.5.3  Additionally, the number of detections greater than the “tolerance limit” is speci-
fied for each well. The 95% UTL is constructed from a set of background wells, also as deter-
mined in the site permit at time of negotiation with regulators. Because there is background 
contamination the following case study provides an example of using a combined 
Shewart/CUSUM method to identify a release at a site. 
 
Table 4-1 
Groundwater Monitoring Data for Case Study 1 

Identification Descriptive Statistics Excursions? Trend 
Significance 

Class Well n Avg Med s W MK 
95% 90% 

Control 
Chart 

Tolerance 
Limit 

MW1 46 5595.0 5610.0 982.0 Yes No Up Up None 3 
MW2 44 62.3 67.2 21.5 Yes No Down Down None None 
MW3 40 1295.0 1198.0 367.8 No No Down Down None None Comp. 

MW4 47 133.8 133.7 22.3 Yes No Down Down None None 
MW5 16 0.0 0.0 0.0 N/A N/A None None None None 
MW6 16 0.0 0.0 0.0 N/A N/A None None None None 
MW7 16 0.0 0.0 0.0 N/A N/A None None None None 
MW8 16 0.0 0.0 0.0 N/A N/A None None None None 
MW9 16 0.0 0.0 0.0 N/A N/A None None None None 
MW10 16 0.0 0.0 0.0 N/A N/A None None None None 
MW11 16 0.369 0.4 0.307 Yes No None None None None 
MW12 16 0.0 0.0 0.0 N/A N/A None None None None 
MW13 16 0.0 0.0 0.0 N/A N/A None None None None 
MW14 16 0.0 0.0 0.0 N/A N/A None None None None 

Detect. 

MW15 16 0.039 0.0 0.088 No No None None None None 
 
Notes: Comp Compliance 
 n Number of samples 
 Avg Sample mean 
 Med Sample median 
 s Sample standard deviation 
 W Normal according to Shapiro-Wilk test at 95% confidence? 
 MK Seasonality according to Mann-Kendall test at 95% confidence? 

 
4.6 Case Study 2—Shewart/CUSUM Monitoring.  A groundwater plume at a site is cur-
rently being addressed via pumping and treating large amounts of groundwater. The system is 
very costly, and the site owner wishes to change the system configuration. Project regulators 
want to know whether changing the system (in this case, shutting off the treatment system) will 
increase measured trichloroethene (TCE) values near the leading edge of the plume. A special 
type of compliance monitoring was initiated to determine whether concentrations after system 
shutdown exceeded a “trigger” level. Table 4-2 lists the eight most recent TCE measurements at 
monitoring well B-37 prior to altering the system. 
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 4.6.1  The sample mean for these data ( x ) is 4.3 parts per billion (ppb) and the sample 
standard deviation (s) is 1.1 ppb. These values are used in statistical tests for normality, which 
did not indicate the data set is non-normal. (A hypothesis of normality cannot be rejected at the 
90% significance level using any of the Shapiro-Wilk, Anderson-Darling, Kolmogorov-Smirnov, 
or D’Agostino tests [See Appendix F].) 
 
Table 4-2 
Eight Most Recent TCE Measurements in B-37 

 
Well ID 

Sample 
Date 

Measured TCE 
Concentration (μg/L) 

B-37 7-Jun-99 3.0 
B-37 29-Nov-99 3.2 
B-37 26-Jun-00 4.5 
B-37 3-Jan-01 5.8 
B-37 16-May-01 5.9 
B-37 4-Oct-01 3.2 
B-37 27-Mar-02 4.6 
B-37 10-Dec-02 4.3 

 
 4.6.2  Table 4-3 lists the measured TCE concentrations in this well over eight monitoring 
periods after system shutdown in mid-December 2002, and the associated Shewart/CUSUM sta-
tistical parameters (see Appendix K). The Shewart/CUSUM calculations shown in the table are 
plotted in the Figure 4-6. 
 
Table 4-3 
TCE Measurements and Shewart/CUSUM Calculations 

 
Hypothetical 

Sampling Event 

 
Sampling 
Period, i 

TCE 
Concentration 

(μg/L) 

 
 

zi 

 
 

zi-1 

 
 

Si 
Winter 2002 1 4.9 0.6 –0.4 0 
Spring 2003 2 5.7 1.2 0.2 0.2 
Summer 2003 3 6.0 1.4 0.4 0.7 
Fall 2003 4 3.9 –0.4 –1.4 0.0 
Winter 2003 5 9.8 4.8 3.8 3.8 
Spring 2004 6 8.1 3.3 2.3 6.1 
Summer 2004 7 7.5 2.8 1.8 8.0 
Fall 2004 8 10.6 5.5 4.5 12.5 

zi = standardized result (or normalized concentration) 
Si = cumulative sum 

 
 4.6.3  The quantities zi and Si (discussed in Appendix K) were calculated to determine 
whether changing the system configuration resulted in an unacceptable change (i.e., increase) in 
the TCE concentration in Well B-37.  
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 4.6.4  The first out-of-control event occurred in winter 2003 when the zi of 4.8 exceeded 
the Shewart threshold of 4.5. In addition, although the normalized concentration zi decreases af-
ter the fifth sampling event following the start of shutdown, Si continues to increase beyond and 
remains greater than the threshold of 5.0 for this quantity through fall 2004. 
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Figure 4-6.  Shewart/CUSUM control chart, Well B-37. 

 
 4.6.5  The results of the testing showed that reconfiguring the system appeared to change 
the concentrations of TCE in this downgradient well at a statistically significant level. The recon-
figuration was abandoned, and project planners began to reevaluate their understanding of 
groundwater movement at the site. 
 
 4.6.6  The Shewart/CUSUM method is commonly applied to landfills for detection moni-
toring, although it has obvious additional uses in other long-term monitoring applications. For 
instance, by looking for an insignificant change over time, a site stakeholder could suggest that 
monitoring at a natural attenuation site could be discontinued. 
 
4.7 Optimization.  The process of optimization is similar in many ways to the process of 
sensitivity analysis. In both cases, one makes planned adjustments to the system and looks for 
changes in the outcome. The process of optimization involves assessing whether or not a change 
made in the system results in a beneficial outcome—improving system performance, for exam-
ple, by reducing cost, increasing efficiency, or shortening the time to completion. This can be ac-
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complished by comparing data taken after the adjustments have been made to historical data for 
the process using a variety of hypothesis testing tools.  
 
 4.7.1  It is also possible to examine trends in the system after taking into account seasonal 
and other forms of cyclic correlation. For example, when a time plot is examined for trend after a 
system modification, one may find that the slope of the time plot line changes, indicating a 
change in system performance. A time series plot is a graph showing how a parameter (e.g., TCE 
concentration) changes over time. A trend is a statistically significant change upward or down-
ward with a certain degree of confidence. Whether or not that change is significant and an as-
sessment of the magnitude of its impact can be addressed using trend tests such as Mann-Kendall 
and Sen’s Slope Estimator.*  
 
 4.7.2  Another example of system optimization is in addressing such issues as the moni-
tored analyte list and the frequency of sampling, both of which have economic implications and 
can have regulatory implications as well. As a hypothetical extreme case for illustration, assume 
that a monitoring well network must be sampled four times each year; that there are 10 wells in 
the network; and that each well is monitored for 50 constituents, all of which must be non-
detects.  
 
 4.7.3  The statistics underlying the determination of a detection limit (e.g., if normality is 
assumed and the detection limit is the “Type I detection limit” or “critical value” in Appendix C) 
are such that there is only a 1% probability of a false positive at the detection limit while, as the 
statistics employed are one-sided, there is a 50% probability of a false negative at the detection 
limit. Thus, in the course of a given year, based on probability alone, the facility could falsely 
report itself in violation an average of 20 times, while falsely reporting compliance 1000 times 
(on the average). In fact, it can be demonstrated that simply because of the inherent Type I error 
rate associated with any statistical test, where literally thousands of such comparisons may be re-
quired, whether at the detection limit or otherwise, the probability of a false conclusion of viola-
tion approaches unity. Thus, it is always in the best interest of the regulated facility to limit the 
number of analytes for which one tests to the smallest possible number. Every permit renewal 
period or 5-year review should be used as an opportunity to further limit the analyte list. Even 
hypothetically, one can see that this approach is inefficient (costly), and reaching the goal of all 
non-detect is an example of a poorly defined quality objective. Detection limits can differ across 
laboratories and over time, and, clearly, they are not related to risk management in any way. 
 
 4.7.4  Another approach currently under study is the use of statistics to establish predict-
able correlation between the analyte of interest and some parameter that is more readily or cost-
effectively measured than the analyte of interest. This “harbinger” or “calibration” approach has 
its roots in the commonly accepted practice of monitoring for indicator parameters such as pH, 
conductivity, total organic carbon, and total organic halides in place of specific analytes. If a rig-
                                                 
* Appendix  P. 
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orous regression analysis of historical data suggests a quantitative linkage between the concen-
tration of arsenic and magnesium at a given site, it should be possible to delete, or at least reduce 
the frequency of analysis, for one or the other analyte, particularly in the case where both ana-
lytes have historically displayed compliant behavior. It would also be useful in this type of situa-
tion if a functional relationship and the uncertainty associated with that relationship could be 
established.  
 
 4.7.5  To assess the viability of monitored natural attenuation as a remedial alternative, it 
is essential to demonstrate: i) degradation of VOCs from parent products through to mineraliza-
tion; and ii) correlation between that degradation and appropriate geochemical conditions. An 
example of assessing the correlation of parameters at a site in Maryland is illustrated in Case 
Study 3. Correlation measures show how strongly variables (or parameters) are related, or 
change with each other. 
 
4.8 Case Study 3—Trend Analysis and Correlation in Natural Attenuation Data. 
 
 4.8.1  The data used for a site in Maryland were organized along a single geographic line, 
from the suspected source to a groundwater discharge zone located along a creek bed. Location 
was displayed in feet from the center of the suspected source. The parent constituent was PCE. 
The primary geochemical indicators of interest (for purposes of this case study) were dissolved 
oxygen (DO) and oxidation-reduction potential (redox).  
 
Table 4-4 
Attenuation Data 

Distance from Source 
(feet) PCE (μg/L) DO (mg/L) Redox (mV) 

0 320 0 –210 
50 1430 0 –220 

100 960 0.2 –170 
150 780 0.3 –140 
200 570 0.6 –80 
250 630 0.5 –30 
300 580 0.8 10 
350 340 1.1 40 
400 430 1.4 70 
450 130 1.7 90 
500 12 3.5 120 

 
 4.8.2  The data for the three parameters of interest are presented in Table 4-4. The data 
were then plotted against distance from the origin (source) to identify trends over distance. A 
Mann-Kendall trend analysis showed that PCE concentration decreased over distance. Redox and 
DO are positively correlated to one another with a Pearson’s r value of 0.84. Geochemical un-
derstanding of natural attenuation requires that redox and DO should be inversely correlated to 
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PCE concentration, and the Pearson’s r values for DO and redox are –0.71 and –0.74, respec-
tively. The results are displayed in the Figures 4-7 and 4-8. In summary, the results suggest that 
conditions for natural attenuation are present. 
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Figure 4-7.  PCE concentration versus distance. 
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Figure 4-8.  Geochemical parameters versus distance from source 
(yellow triangle—redox; blue diamond—dissolved oxygen). 
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Section II 
Applying Cleanup Levels 
 
4.9 Introduction.  When derived in accordance with USEPA’s risk assessment guidance, 
risk-based cleanup levels are intended to represent the average contaminant concentration within 
the exposure unit that can be left on the site following remediation (Schulz and Griffin, 2001). In 
contrast, a “not-to-exceed” cleanup level drives remediation solutions that involve treating or 
removing any and all media with contaminant concentrations that exceed the cleanup level. The 
result is that applying a not-to-exceed level may result in over-remediation. 
 
 4.9.1  Calculated using risk assessment principles, the cleanup goal concentration is 
usually defined as an exposure unit concentration that will meet the target risk level agreed to by 
the design team and regulatory authorities. Some sample concentrations exceeding the cleanup 
objective can remain in place as long as the overall exposure concentration, calculated to a 
predetermined level of certainty, meets the cleanup goal (and likewise the agreed upon risk 
level). Because of the uncertainty associated with estimating the true average concentration of a 
contaminant at a site, USEPA recommends use of the 95% one-sided, upper confidence limit of 
the arithmetic mean (95% UCL) of the sample data to represent the exposure unit concentration 
term in risk assessments (EPA 9285.7-09A and EPA OSWER 9285.6-10). Consequently, a risk-
based cleanup level should generally be interpreted as the 95% UCL of the contaminant 
concentration within the exposure unit following remediation. 
 
 4.9.2  However, draft USEPA guidance suggests specific situations in which application 
of the cleanup level as an area average may not be appropriate (USEPA, 2002) These include the 
following. 
 
 4.9.2.1  Exposure within the exposure unit is not random. 
 
 4.9.2.2  The cleanup level is based on acute rather than chronic exposure. 
 
 4.9.2.3  The cleanup level is not risk-based (i.e., it considers factors other than risk). 
 
 4.9.2.4  The quality of site characterization data is not optimal but it is not worth invest-
ing in additional sampling. 
 
 4.9.2.5  Given the site conditions (complexity, size, characterization, contaminant 
distribution), it is not cost-effective to do the necessary sampling and statistical analysis. 
 
 4.9.2.6  The community will not accept leaving soil with contaminant concentrations that 
exceed the cleanup level on the site. 
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 4.9.3  If applying cleanup levels as an area average is appropriate, there are two basic ap-
proaches: i) using non-spatial statistical methods to determine a not-to-exceed concentration, and 
ii) using spatial statistical methods to iteratively re-calculate the UCL until the optimal “design 
line” for the remedial action is determined.  
 
4.10 Determining Not-to-Exceed Concentrations Using Non-Spatial Statistics.  Draft 
USEPA guidance (USEPA, 2002) defines the remedial action level (RAL) as the maximum con-
centration that may be left in place within an exposure unit such that the average concentration 
(or 95% UCL) within the exposure unit is at or below the cleanup level. Non-spatial techniques 
may be appropriate for calculating the RAL when there is no spatial correlation between con-
taminant concentrations, such as at a dump site where small, randomly located spots of high 
contaminant concentrations are interspersed with areas of lower concentrations. Non-spatial 
techniques are based on the mean and standard deviation of the sample contaminant concentra-
tion data and on how those metrics change as soils with high contaminant concentrations are re-
placed with post-remediation concentrations during remediation. The draft guidance describes 
two non-spatial statistical methods for calculating remedial action levels that ensure that post-
remediation area average contaminant concentrations achieve cleanup levels: i) iterative trunca-
tion method, and ii) confidence response goal method. These methods are also reviewed in 
Schulz and Griffin (2001). Both methods can be applied in a spreadsheet calculation or pro-
gramming language.  
 
 4.10.1  Iterative Truncation Method.  
 
 4.10.1.1  The iterative truncation method is based on the identifying and removing 
(truncating) high values in the sample concentration measurements (hot spots), replacing them 
with the post-remediation concentration (e.g., concentration in clean fill), and calculating the hy-
pothetical post-remediation average concentration (95% UCL) in the exposure unit. Starting with 
the highest concentration in the data set, the process is repeated iteratively until the post-
remediation 95% UCL is less than or equal to the cleanup level. The highest sample concentra-
tion remaining in the data set is designated the RAL. 
 
 4.10.1.2  This method is sensitive to the completeness of site characterization and the 
range of resultant sample concentrations. According to the draft USEPA guidance, to use this 
method with confidence, good site characterization through extensive, unbiased sampling is re-
quired and the resulting data must adequately represent random, long-term exposure to receptors. 
This method is not reliable when samples are not independently and randomly located. 
 
 4.10.2  Confidence Response Goal Method.  Bowers et al. (1996) developed a method for 
calculating a confidence response goal (CRG), which, like the RAL, is a not-to-exceed level. 
This method can be applied at sites where there is a non-spatial, lognormal distribution of con-
tamination (USEPA, 2002).  
 



EM 1110-1-4014 
15 Jan 07 

 

4-17 

 4.10.2.1  As described in the draft USEPA guidance, the basic premise of the method is 
that the CRG can be expressed as a function of the geometric mean and the geometric standard 
deviation of contaminant concentrations, and the desired reduction in exposure, which is defined 
as the ratio of average post-remediation concentration to the average pre-remediation concentra-
tion. The guidance provides a summary of the method, documents the equation for calculating 
the CRG, and refers the reader to the original paper (Bowers et al., 1996) for details on the deri-
vation of the function.  
 
 4.10.2.2  The Schulz and Griffin (2001) review of the two non-spatial methods concludes 
that the CRG method is less sensitive than the iterative truncation method to changes in the high-
est sample concentrations and recommends the use of the CRG method when the contaminant 
distribution is lognormal.  
 
 4.10.3  Using Spatial Statistical Methods to Determine “Design Line” for Remediation.  
The distribution of contaminant concentrations may be spatially correlated at many sites where 
there is an original source or release that is subject to environmental fate and transport mecha-
nisms. Contaminant concentrations in and around the original source or release may be higher 
than those at greater distances, or they may be higher where there is a mechanism of accumula-
tion or an environmental “sink.” Biased sampling is frequently applied in such cases because a 
high number of samples is desired in areas with high variance and uncertainty (for example, near 
the source area), and a lower number of samples is often sufficient to characterize areas with ex-
pected low variance and uncertainty. The concept of taking “step out” samples in the vicinity of 
sample locations where high contaminant concentrations are detected also introduces bias into 
the sampling plan. Geostatistical techniques are statistical procedures designed to process spa-
tially correlated data (see Appendix R on Geostatistics). Unlike the non-spatial techniques, geo-
statistical techniques are well suited for evaluation of biased data sets.  
 
 4.10.3.1  The draft USEPA guidance presents an example of the determination of RALs 
using geostatistical techniques. The example has two simplifying features that can be found on 
many (but not all) sites: i) contamination that is surface only, and ii) the importance of a residen-
tial scenario. For this example, the steps for determining RALs are as follows. 
 
 4.10.3.1.1  Create an iso-concentration map of the site by modeling the spatial correlation 
underlying measured values. 
 
 4.10.3.1.2  Superimpose a grid of exposure units over the site and compute average con-
taminant concentrations in each exposure unit. 
 
 4.10.3.1.3  Identify zones that must be remediated to reduce average concentrations in all 
exposure units to the appropriate cleanup level. This is an iterative process, where the higher 
contaminant concentrations are replaced with post-remediation concentrations and average con-
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taminant concentrations in each exposure unit are re-calculated. The final cutoff concentration is 
the RAL.   
 
 4.10.3.1.4  Use the original iso-concentration map to define zones with concentrations in 
excess of the RAL. The contoured zone is the area that requires remediation. 
 
 4.10.3.2  The draft guidance cautions against using geostatistical techniques if contami-
nant concentrations show a random, non-spatial pattern, or if the anticipated benefits from geo-
statistical analysis do not justify the costs. For example, even in cases of conservatively biased 
data, spatial statistical methods may not be warranted when non-spatial methods are determined 
to result in cleanup objectives that are both sufficiently conservative from the risk perspective 
and acceptable from the cleanup cost perspective. Additionally, conservatively biased, non-
spatial methods may be needed from a practical view when adequate technical or computational 
resources are not available. Proponents of geostatistical techniques counter that presentating the 
site contamination and remediation results as spatial is a highly intuitive and visually powerful 
approach, and therefore enhances communication among the parties during risk management 
discussions. Available computational tools make it possible to find the point of diminishing re-
turns where an increase in remediation has little effect on reducing risk in a cost-effective man-
ner. 
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APPENDIX B 
Statistical Tables 

 

Table B-1 
Binomial Distribution 
 
n k p=0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

1  0  0.9500  0.9000  0.8500  0.8000  0.7500  0.7000  0.6500  0.6000  0.5500  0.5000  0.4500  0.4000  0.3500  0.3000  0.2500  0.2000  0.1500  0.1000  0.05000  

 1  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

2  0  0.9025  0.8100  0.7225  0.6400  0.5625  0.4900  0.4225  0.3600  0.3025  0.2500  0.2025  0.1600  0.1225  0.09000  0.06250  0.04000  0.02250  0.01000  0.002500  

 1  0.9975  0.9900  0.9775  0.9600  0.9375  0.9100  0.8775  0.8400  0.7975  0.7500  0.6975  0.6400  0.5775  0.5100  0.4375  0.3600  0.2775  0.1900  0.09750  

 2  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

3  0  0.8574 0.729 0.6141 0.512 0.4219 0.343 0.2746 0.216 0.1664 0.125 0.09113 0.064 0.04288 0.027 0.01563 8.000E-03 3.375E-03 1.000E-03 1.250E-04 

 1  0.9928 0.972 0.9393 0.896 0.8438 0.784 0.7183 0.648 0.5748 0.5 0.4253 0.352 0.2818 0.216 0.1563 0.104 0.06075 0.028 7.250E-03 

 2  0.9999 0.999 0.9966 0.992 0.9844 0.973 0.9571 0.936 0.9089 0.875 0.8336 0.784 0.7254 0.657 0.5781 0.488 0.3859 0.271 0.1426 

 3  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

4  0  0.8145 0.6561 0.522 0.4096 0.3164 0.2401 0.1785 0.1296 0.09151 0.0625 0.04101 0.0256 0.01501 8.100E-03 3.906E-03 1.600E-03 5.062E-04 1.000E-04 6.250E-06 

 1  0.986 0.9477 0.8905 0.8192 0.7383 0.6517 0.563 0.4752 0.391 0.3125 0.2415 0.1792 0.1265 0.0837 0.05078 0.0272 0.01198 3.700E-03 4.812E-04 

 2  0.9995 0.9963 0.988 0.9728 0.9492 0.9163 0.8735 0.8208 0.7585 0.6875 0.609 0.5248 0.437 0.3483 0.2617 0.1808 0.1095 0.0523 0.01402 

 3  1.000  0.9999 0.9995 0.9984 0.9961 0.9919 0.985 0.9744 0.959 0.9375 0.9085 0.8704 0.8215 0.7599 0.6836 0.5904 0.478 0.3439 0.1855 

 4  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

5  0  0.7738 0.5905 0.4437 0.3277 0.2373 0.1681 0.116 0.07776 0.05033 0.03125 0.01845 0.01024 5.252E-03 2.430E-03 9.766E-04 3.200E-04 7.594E-05 1.000E-05 3.125E-07 

 1  0.9774 0.9185 0.8352 0.7373 0.6328 0.5282 0.4284 0.337 0.2562 0.1875 0.1312 0.08704 0.05402 0.03078 0.01562 6.720E-03 2.227E-03 4.600E-04 3.000E-05 

 2  0.9988 0.9914 0.9734 0.9421 0.8965 0.8369 0.7648 0.6826 0.5931 0.5 0.4069 0.3174 0.2352 0.1631 0.1035 0.05792 0.02661 8.560E-03 1.158E-03 

 3  1.000  0.9995 0.9978 0.9933 0.9844 0.9692 0.946 0.913 0.8688 0.8125 0.7438 0.663 0.5716 0.4718 0.3672 0.2627 0.1648 0.08146 0.02259 

 4  1.000  1.000  0.9999 0.9997 0.999 0.9976 0.9947 0.9898 0.9815 0.9688 0.9497 0.9222 0.884 0.8319 0.7627 0.6723 0.5563 0.4095 0.2262 

 5  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  
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B-2 

n k p=0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

 

6  0  0.7351 0.5314 0.3771 0.2621 0.178 0.1176 0.07542 0.04666 0.02768 0.01563 8.304E-03 4.096E-03 1.838E-03 7.290E-04 2.441E-04 6.400E-05 1.139E-05 1.000E-06 1.562E-08 

 1  0.9672 0.8857 0.7765 0.6554 0.5339 0.4202 0.3191 0.2333 0.1636 0.1094 0.0692 0.04096 0.02232 0.01094 4.639E-03 1.600E-03 3.987E-04 5.500E-05 1.797E-06 

 2  0.9978 0.9842 0.9527 0.9011 0.8306 0.7443 0.6471 0.5443 0.4415 0.3438 0.2553 0.1792 0.1174 0.07047 0.0376 0.01696 5.885E-03 1.270E-03 8.641E-05 

 3  0.9999 0.9987 0.9941 0.983 0.9624 0.9295 0.8826 0.8208 0.7447 0.6563 0.5585 0.4557 0.3529 0.2557 0.1694 0.09888 0.04734 0.01585 2.230E-03 

 4  1.000  0.9999 0.9996 0.9984 0.9954 0.9891 0.9777 0.959 0.9308 0.8906 0.8364 0.7667 0.6809 0.5798 0.4661 0.3446 0.2235 0.1143 0.03277 

 5  1.000  1.000  1.000  0.9999 0.9998 0.9993 0.9982 0.9959 0.9917 0.9844 0.9723 0.9533 0.9246 0.8824 0.822 0.7379 0.6229 0.4686 0.2649 

 6  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

7  0  0.6983 0.4783 0.3206 0.2097 0.1335 0.08235 0.04902 0.02799 0.01522 7.813E-03 3.737E-03 1.638E-03 6.434E-04 2.187E-04 6.104E-05 1.280E-05 1.709E-06 1.000E-07 7.812E-10 

 1  0.9556 0.8503 0.7166 0.5767 0.4449 0.3294 0.2338 0.1586 0.1024 0.0625 0.03571 0.01884 9.008E-03 3.791E-03 1.343E-03 3.712E-04 6.948E-05 6.400E-06 1.047E-07 

 2  0.9962 0.9743 0.9262 0.852 0.7564 0.6471 0.5323 0.4199 0.3164 0.2266 0.1529 0.09626 0.05561 0.0288 0.01288 4.672E-03 1.222E-03 1.765E-04 6.027E-06 

 3  0.9998 0.9973 0.9879 0.9667 0.9294 0.874 0.8002 0.7102 0.6083 0.5 0.3917 0.2898 0.1998 0.126 0.07056 0.03334 0.0121 2.728E-03 1.936E-04 

 4  1.000  0.9998 0.9988 0.9953 0.9871 0.9712 0.9444 0.9037 0.8471 0.7734 0.6836 0.5801 0.4677 0.3529 0.2436 0.148 0.07377 0.02569 3.757E-03 

 5  1.000  1.000  0.9999 0.9996 0.9987 0.9962 0.991 0.9812 0.9643 0.9375 0.8976 0.8414 0.7662 0.6706 0.5551 0.4233 0.2834 0.1497 0.04438 

 6  1.000  1.000  1.000  1.000  0.9999 0.9998 0.9994 0.9984 0.9963 0.9922 0.9848 0.972 0.951 0.9176 0.8665 0.7903 0.6794 0.5217 0.3017 

 7  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

8  0  0.6634 0.4305 0.2725 0.1678 0.1001 0.05765 0.03186 0.0168 8.373E-03 3.906E-03 1.682E-03 6.554E-04 2.252E-04 6.561E-05 1.526E-05 2.560E-06 2.563E-07 1.000E-08 3.906E-11 

 1  0.9428 0.8131 0.6572 0.5033 0.3671 0.2553 0.1691 0.1064 0.06318 0.03516 0.01812 8.520E-03 3.571E-03 1.290E-03 3.815E-04 8.448E-05 1.187E-05 7.300E-07 5.977E-09 

 2  0.9942 0.9619 0.8948 0.7969 0.6785 0.5518 0.4278 0.3154 0.2201 0.1445 0.08846 0.04981 0.02532 0.01129 4.227E-03 1.231E-03 2.423E-04 2.341E-05 4.008E-07 

 3  0.9996 0.995 0.9786 0.9437 0.8862 0.8059 0.7064 0.5941 0.477 0.3633 0.2604 0.1737 0.1061 0.05797 0.0273 0.01041 2.854E-03 4.316E-04 1.540E-05 

 4  1.000  0.9996 0.9971 0.9896 0.9727 0.942 0.8939 0.8263 0.7396 0.6367 0.523 0.4059 0.2936 0.1941 0.1138 0.05628 0.02135 5.024E-03 3.718E-04 

 5  1.000  1.000  0.9998 0.9988 0.9958 0.9887 0.9747 0.9502 0.9115 0.8555 0.7799 0.6846 0.5722 0.4482 0.3215 0.2031 0.1052 3.809E-02 5.788E-03 

 6  1.000  1.000  1.000  0.9999 0.9996 0.9987 0.9964 0.9915 0.9819 0.9648 0.9368 0.8936 0.8309 0.7447 0.6329 0.4967 0.3428 0.1869 0.05724 

 7  1.000  1.000  1.000  1.000  1.000  0.9999 0.9998 0.9993 0.9983 0.9961 0.9916 0.9832 0.9681 0.9424 0.8999 0.8322 0.7275 0.5695 0.3366 

 8  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

                     

9  0  0.6302 0.3874 0.2316 0.1342 0.07508 0.04035 0.02071 0.01008 4.605E-03 1.953E-03 7.567E-04 2.621E-04 7.882E-05 1.968E-05 3.815E-06 5.120E-07 3.844E-08 1.000E-09 1.953E-12 

 1  0.9288 0.7748 0.5995 0.4362 0.3003 0.196 0.1211 0.07054 0.03852 0.01953 9.080E-03 3.801E-03 1.396E-03 4.330E-04 1.068E-04 1.894E-05 1.999E-06 8.200E-08 3.359E-10 
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B-3 

n k p=0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

 2  0.9916 0.947 0.8591 0.7382 0.6007 0.4628 0.3373 0.2318 0.1495 0.08984 0.04977 0.02503 0.01118 4.291E-03 1.343E-03 3.139E-04 4.644E-05 2.998E-06 2.572E-08 

 3  0.9994 0.9917 0.9661 0.9144 0.8343 0.7297 0.6089 0.4826 0.3614 0.2539 0.1658 0.09935 0.05359 0.02529 9.995E-03 3.066E-03 6.340E-04 6.423E-05 1.151E-06 

 4  1.000  0.9991 0.9944 0.9804 0.9511 0.9012 0.8283 0.7334 0.6214 0.5 0.3786 0.2666 0.1717 0.09881 0.04893 0.01958 5.629E-03 8.909E-04 3.322E-05 

 5  1.000  0.9999 0.9994 0.9969 0.99 0.9747 0.9464 0.9006 0.8342 0.7461 0.6386 0.5174 0.3911 0.2703 0.1657 0.08564 0.03393 8.331E-03 6.426E-04 

 6  1.000  1.000  1.000  0.9997 0.9987 0.9957 0.9888 0.975 0.9502 0.9102 0.8505 0.7682 0.6627 0.5372 0.3993 0.2618 0.1409 0.05297 8.361E-03 

 7  1.000  1.000  1.000  1.000  0.9999 0.9996 0.9986 0.9962 0.9909 0.9805 0.9615 0.9295 0.8789 0.804 0.6997 0.5638 0.4005 0.2252 0.07121 

 8  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9997 0.9992 0.998 0.9954 0.9899 0.9793 0.9596 0.9249 0.8658 0.7684 0.6126 0.3698 

 9  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

10  0  0.5987 0.3487 0.1969 0.1074 0.05631 0.02825 0.01346 6.047E-03 2.533E-03 9.766E-04 3.405E-04 1.049E-04 2.759E-05 5.905E-06 9.537E-07 1.024E-07 5.767E-09 1.000E-10 9.766E-14 

 1  0.9139 0.7361 0.5443 0.3758 0.244 0.1493 0.08595 0.04636 0.02326 0.01074 4.502E-03 1.678E-03 5.399E-04 1.437E-04 2.956E-05 4.198E-06 3.325E-07 9.100E-09 1.865E-11 

 2  0.9885 0.9298 0.8202 0.6778 0.5256 0.3828 0.2616 0.1673 0.09956 0.05469 0.02739 0.01229 4.821E-03 1.590E-03 4.158E-04 7.793E-05 8.665E-06 3.736E-07 1.605E-09 

 3  0.999 0.9872 0.95 0.8791 0.7759 0.6496 0.5138 0.3823 0.266 0.1719 0.102 0.05476 0.02602 0.01059 3.506E-03 8.644E-04 1.346E-04 9.122E-06 8.198E-08 

 4  0.9999 0.9984 0.9901 0.9672 0.9219 0.8497 0.7515 0.6331 0.5044 0.377 0.2616 0.1662 0.09493 0.04735 0.01973 6.369E-03 1.383E-03 1.469E-04 2.755E-06 

 5  1.000  0.9999 0.9986 0.9936 0.9803 0.9527 0.9051 0.8338 0.7384 0.623 0.4956 0.3669 0.2485 0.1503 0.07813 0.03279 9.874E-03 1.635E-03 6.369E-05 

 6  1.000  1.000  0.9999 0.9991 0.9965 0.9894 0.974 0.9452 0.898 0.8281 0.734 0.6177 0.4862 0.3504 0.2241 0.1209 0.04997 0.0128 1.028E-03 

 7  1.000  1.000  1.000  0.9999 0.9996 0.9984 0.9952 0.9877 0.9726 0.9453 0.9004 0.8327 0.7384 0.6172 0.4744 0.3222 0.1798 0.07019 0.0115 

 8  1.000  1.000  1.000  1.000  1.000  0.9999 0.9995 0.9983 0.9955 0.9893 0.9767 0.9536 0.914 0.8507 0.756 0.6242 0.4557 0.2639 0.08614 

 9  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9997 0.999 0.9975 0.994 0.9865 0.9718 0.9437 0.8926 0.8031 0.6513 0.4013 

 10  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

11  0  0.5688 0.3138 0.1673 0.0859 0.04224 0.01977 8.7510E-03 3.6280E-03 1.3930E-03 4.8830E-04 1.532E-04 4.194E-05 9.655E-06 1.771E-06 2.384E-07 2.048E-08 8.650E-10 1.000E-11 4.883E-15 

 1  0.8981 0.6974 0.4922 0.3221 0.1971 0.113 0.06058 0.03023 0.01393 5.8590E-03 2.213E-03 7.340E-04 2.069E-04 4.724E-05 8.106E-06 9.216E-07 5.478E-08 1.000E-09 1.025E-12 

 2  0.9848 0.9104 0.7788 0.6174 0.4552 0.3127 0.2001 0.1189 0.06522 3.2710E-02 0.0148 5.924E-03 2.038E-03 5.777E-04 1.261E-04 1.894E-05 1.582E-06 4.555E-08 9.797E-11 

 3  0.9984 0.9815 0.9306 0.8389 0.7133 0.5696 0.4256 0.2963 0.1911 0.1133 0.06096 0.02928 0.01224 4.291E-03 1.188E-03 2.352E-04 2.755E-05 1.248E-06 5.624E-09 

 4  0.9999 0.9972 0.9841 0.9496 0.8854 0.7897 0.6683 0.5328 0.3971 0.2744 0.1738 0.09935 0.05014 0.02162 7.561E-03 1.965E-03 3.219E-04 2.290E-05 2.156E-07 

 5  1.000  0.9997 0.9973 0.9883 0.9657 0.9218 0.8513 0.7535 0.6331 0.5 0.3669 0.2465 0.1487 0.07822 0.03433 0.01165 2.657E-03 2.957E-04 5.801E-06 

 6  1.000  1.000  0.9997 0.998 0.9924 0.9784 0.9499 0.9006 0.8262 0.7256 0.6029 0.4672 0.3317 0.2103 0.1146 0.05041 0.01589 2.751E-03 1.119E-04 

 7  1.000  1.000  1.000  0.9998 0.9988 0.9957 0.9878 0.9707 0.939 0.8867 0.8089 0.7037 0.5744 0.4304 0.2867 0.1611 0.06944 0.01853 1.552E-03 

 8  1.000  1.000  1.000  1.000  0.9999 0.9994 0.998 0.9941 0.9852 0.9673 0.9348 0.8811 0.7999 0.6873 0.5448 0.3826 0.2212 0.08956 0.01524 
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B-4 

n k p=0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

 9  1.000  1.000  1.000  1.000  1.000  1.000  0.9998 0.9993 0.9978 0.9941 0.9861 0.9698 0.9394 0.887 0.8029 0.6779 0.5078 0.3026 0.1019 

 10  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9998 0.9995 0.9986 0.9964 0.9912 0.9802 0.9578 0.9141 0.8327 0.6862 0.4312 

 11  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

12  0  0.5404 0.2824 0.1422 0.06872 0.03168 0.01384 5.688E-03 2.177E-03 7.662E-04 0.0002441 6.895E-05 1.678E-05 3.379E-06 5.314E-07 5.960E-08 4.096E-09 1.297E-10 1.000E-12 2.441E-16 

 1  0.8816 0.659 0.4435 0.2749 0.1584 0.08503 0.04244 0.01959 8.289E-03 0.003174 1.080E-03 3.188E-04 7.869E-05 1.541E-05 2.205E-06 2.007E-07 8.952E-09 1.090E-10 5.591E-14 

 2  0.9804 0.8891 0.7358 0.5583 0.3907 0.2528 0.1513 0.08344 0.04214 0.01929 7.878E-03 2.810E-03 8.479E-04 2.064E-04 3.761E-05 4.526E-06 2.839E-07 5.455E-09 5.873E-12 

 3  0.9978 0.9744 0.9078 0.7946 0.6488 0.4925 0.3467 0.2253 0.1345 0.073 0.03557 0.01527 5.610E-03 1.692E-03 3.917E-04 6.220E-05 5.478E-06 1.658E-07 3.743E-10 

 4  0.9998 0.9957 0.9761 0.9274 0.8424 0.7237 0.5833 0.4382 0.3044 0.1938 0.1117 0.05731 0.02551 9.489E-03 2.782E-03 5.812E-04 7.170E-05 3.414E-06 1.612E-08 

 5  1.000  0.9995 0.9954 0.9806 0.9456 0.8822 0.7873 0.6652 0.5269 0.3872 0.2607 0.1582 0.08463 0.0386 0.01425 3.903E-03 6.721E-04 5.018E-05 4.949E-07 

 6  1.000  0.9999 0.9993 0.9961 0.9857 0.9614 0.9154 0.8418 0.7393 0.6128 0.4731 0.3348 0.2127 0.1178 0.0544 0.01941 4.642E-03 5.412E-04 1.111E-05 

 7  1.000  1.000  0.9999 0.9994 0.9972 0.9905 0.9745 0.9427 0.8883 0.8062 0.6956 0.5618 0.4167 0.2763 0.1576 0.07256 0.02392 4.329E-03 1.839E-04 

 8  1.000  1.000  1.000  0.9999 0.9996 0.9983 0.9944 0.9847 0.9644 0.927 0.8655 0.7747 0.6533 0.5075 0.3512 0.2054 0.09221 0.02564 2.236E-03 

 9  1.000  1.000  1.000  1.000  1.000  0.9998 0.9992 0.9972 0.9921 0.9807 0.9579 0.9166 0.8487 0.7472 0.6093 0.4417 0.2642 0.1109 0.01957 

 10  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9997 0.9989 0.9968 0.9917 0.9804 0.9576 0.915 0.8416 0.7251 0.5565 0.341 0.1184 

 11  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9998 0.9992 0.9978 0.9943 0.9862 0.9683 0.9313 0.8578 0.7176 0.4596 

 12  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

13  0  0.5133 0.2542 0.1209 0.05498 0.02376 9.689E-03 3.697E-03 1.306E-03 4.214E-04 1.221E-04 3.103E-05 6.711E-06 1.183E-06 1.594E-07 1.490E-08 8.192E-10 1.946E-11 1.000E-13 1.221E-17 

 1  0.8646 0.6213 0.3983 0.2336 0.1267 0.06367 0.02958 0.01263 4.904E-03 1.709E-03 5.240E-04 1.376E-04 2.974E-05 4.996E-06 5.960E-07 4.342E-08 1.453E-09 1.180E-11 3.027E-15 

 2  0.9755 0.8661 0.692 0.5017 0.3326 0.2025 0.1132 0.0579 0.02691 0.01123 4.139E-03 1.315E-03 3.479E-04 7.270E-05 1.106E-05 1.066E-06 5.020E-08 6.436E-10 3.468E-13 

 3  0.9969 0.9658 0.882 0.7473 0.5843 0.4206 0.2783 0.1686 0.09292 0.04614 0.02034 7.793E-03 2.515E-03 6.520E-04 1.261E-04 1.606E-05 1.063E-06 2.149E-08 2.429E-11 

 4  0.9997 0.9935 0.9658 0.9009 0.794 0.6543 0.5005 0.353 0.2279 0.1334 0.06985 0.03208 0.01257 4.031E-03 9.891E-04 1.660E-04 1.541E-05 4.906E-07 1.162E-09 

 5  1.000  0.9991 0.9925 0.97 0.9198 0.8346 0.7159 0.5744 0.4268 0.2905 0.1788 0.09767 0.0462 0.01822 5.649E-03 1.246E-03 1.618E-04 8.090E-06 4.006E-08 

 6  1.000  0.9999 0.9987 0.993 0.9757 0.9376 0.8705 0.7712 0.6437 0.5 0.3563 0.2288 0.1295 0.06238 0.02429 7.004E-03 1.268E-03 9.929E-05 1.026E-06 

 7  1.000  1.000  0.9998 0.9988 0.9944 0.9818 0.9538 0.9023 0.8212 0.7095 0.5732 0.4256 0.2841 0.1654 0.08021 0.03004 7.534E-03 9.200E-04 1.975E-05 

 8  1.000  1.000  1.000  0.9998 0.999 0.996 0.9874 0.9679 0.9302 0.8666 0.7721 0.647 0.4995 0.3457 0.206 0.09913 0.03416 6.460E-03 2.866E-04 

 9  1.000  1.000  1.000  1.000  0.9999 0.9993 0.9975 0.9922 0.9797 0.9539 0.9071 0.8314 0.7217 0.5794 0.4157 0.2527 0.118 0.03416 3.103E-03 

 10  1.000  1.000  1.000  1.000  1.000  0.9999 0.9997 0.9987 0.9959 0.9888 0.9731 0.9421 0.8868 0.7975 0.6674 0.4983 0.308 0.1339 0.02451 

 11  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9995 0.9983 0.9951 0.9874 0.9704 0.9363 0.8733 0.7664 0.6017 0.3787 0.1354 



EM 1110-1-4014 
15 Jan 07 

 

B-5 

n k p=0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

 12  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9996 0.9987 0.9963 0.9903 0.9762 0.945 0.8791 0.7458 0.4867 

 13  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

14  0  0.4877 0.2288 0.1028 0.04398 0.01782 6.782E-03 2.403E-03 7.836E-04 2.318E-04 6.104E-05 1.396E-05 2.684E-06 4.140E-07 4.783E-08 3.725E-09 1.638E-10 2.919E-12 1.000E-14 6.104E-19 

 1  0.847 0.5846 0.3567 0.1979 0.101 0.04748 0.02052 8.098E-03 2.887E-03 9.155E-04 2.529E-04 5.906E-05 1.118E-05 1.610E-06 1.602E-07 9.339E-09 2.345E-10 1.270E-12 1.630E-16 

 2  0.9699 0.8416 0.6479 0.4481 0.2811 0.1608 0.08393 0.03979 0.01701 6.470E-03 2.151E-03 6.087E-04 1.411E-04 2.531E-05 3.211E-06 2.479E-07 8.765E-09 7.498E-11 2.021E-14 

 3  0.9958 0.9559 0.8535 0.6982 0.5213 0.3552 0.2205 0.1243 0.06322 0.02869 0.01143 3.906E-03 1.106E-03 2.465E-04 3.982E-05 4.065E-06 2.021E-07 2.729E-09 1.544E-12 

 4  0.9996 0.9908 0.9533 0.8702 0.7415 0.5842 0.4227 0.2793 0.1672 0.08978 0.04262 0.01751 6.035E-03 1.666E-03 3.419E-04 4.605E-05 3.215E-06 6.840E-08 8.117E-11 

 5  1.000  0.9985 0.9885 0.9561 0.8883 0.7805 0.6405 0.4859 0.3373 0.212 0.1189 0.05832 0.02434 8.289E-03 2.154E-03 3.819E-04 3.736E-05 1.251E-06 3.107E-09 

 6  1.000  0.9998 0.9978 0.9884 0.9617 0.9067 0.8164 0.6925 0.5461 0.3953 0.2586 0.1501 0.07534 0.03147 0.01031 2.397E-03 3.276E-04 1.721E-05 8.934E-08 

 7  1.000  1.000  0.9997 0.9976 0.9897 0.9685 0.9247 0.8499 0.7414 0.6047 0.4539 0.3075 0.1836 0.09328 0.03827 0.01161 2.207E-03 1.814E-04 1.962E-06 

 8  1.000  1.000  1.000  0.9996 0.9978 0.9917 0.9757 0.9417 0.8811 0.788 0.6627 0.5141 0.3595 0.2195 0.1117 0.04385 0.01153 1.474E-03 3.309E-05 

 9  1.000  1.000  1.000  1.000  0.9997 0.9983 0.994 0.9825 0.9574 0.9102 0.8328 0.7207 0.5773 0.4158 0.2585 0.1298 0.04674 9.230E-03 4.274E-04 

 10  1.000  1.000  1.000  1.000  1.000  0.9998 0.9989 0.9961 0.9886 0.9713 0.9368 0.8757 0.7795 0.6448 0.4787 0.3018 0.1465 0.04413 4.173E-03 

 11  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9994 0.9978 0.9935 0.983 0.9602 0.9161 0.8392 0.7189 0.5519 0.3521 0.1584 0.03005 

 12  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9997 0.9991 0.9971 0.9919 0.9795 0.9525 0.899 0.8021 0.6433 0.4154 0.153 

 13  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9998 0.9992 0.9976 0.9932 0.9822 0.956 0.8972 0.7712 0.5123 

 14  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

15  0  0.4633 0.2059 0.08735 0.03518 0.01336 4.748E-03 1.562E-03 4.702E-04 1.275E-04 3.052E-05 6.283E-06 1.074E-06 1.449E-07 1.435E-08 9.313E-10 3.277E-11 4.379E-13 1.000E-15 3.052E-20 

 1  0.829 0.549 0.3186 0.1671 0.08018 0.03527 0.01418 5.172E-03 1.692E-03 4.883E-04 1.215E-04 2.523E-05 4.181E-06 5.166E-07 4.284E-08 1.999E-09 3.766E-11 1.360E-13 8.728E-18 

 2  0.9638 0.8159 0.6042 0.398 0.2361 0.1268 0.06173 0.02711 0.01065 3.693E-03 1.107E-03 2.789E-04 5.665E-05 8.719E-06 9.229E-07 5.705E-08 1.514E-09 8.641E-12 1.165E-15 

 3  0.9945 0.9444 0.8227 0.6482 0.4613 0.2969 0.1727 0.0905 0.04242 0.01758 6.327E-03 1.928E-03 4.789E-04 9.166E-05 1.236E-05 1.011E-06 3.777E-08 3.403E-10 9.641E-14 

 4  0.9994 0.9873 0.9383 0.8358 0.6865 0.5155 0.3519 0.2173 0.1204 0.05923 0.02547 9.348E-03 2.831E-03 6.722E-04 1.153E-04 1.246E-05 6.541E-07 9.296E-09 5.525E-12 

 5  0.9999 0.9978 0.9832 0.9389 0.8516 0.7216 0.5643 0.4032 0.2608 0.1509 0.07693 0.03383 0.01244 3.653E-03 7.949E-04 1.132E-04 8.338E-06 1.866E-07 2.324E-10 

 6  1.000  0.9997 0.9964 0.9819 0.9434 0.8689 0.7548 0.6098 0.4522 0.3036 0.1818 0.09505 0.04219 0.01524 4.193E-03 7.850E-04 8.090E-05 2.846E-06 7.418E-09 

 7  1.000  1.000  0.9994 0.9958 0.9827 0.95 0.8868 0.7869 0.6535 0.5 0.3465 0.2131 0.1132 0.05001 0.0173 4.240E-03 6.096E-04 3.362E-05 1.830E-07 

 8  1.000  1.000  0.9999 0.9992 0.9958 0.9848 0.9578 0.905 0.8182 0.6964 0.5478 0.3902 0.2452 0.1311 0.05662 0.01806 3.606E-03 3.106E-04 3.518E-06 

 9  1.000  1.000  1.000  0.9999 0.9992 0.9963 0.9876 0.9662 0.9231 0.8491 0.7392 0.5968 0.4357 0.2784 0.1484 0.06105 0.01681 2.250E-03 5.281E-05 

 10  1.000  1.000  1.000  1.000  0.9999 0.9993 0.9972 0.9907 0.9745 0.9408 0.8796 0.7827 0.6481 0.4845 0.3135 0.1642 0.06171 0.01272 6.147E-04 
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15 Jan 07 
 

B-6 

n k p=0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

 11  1.000  1.000  1.000  1.000  1.000  0.9999 0.9995 0.9981 0.9937 0.9824 0.9576 0.9095 0.8273 0.7031 0.5387 0.3518 0.1773 0.05556 5.467E-03 

 12  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9997 0.9989 0.9963 0.9893 0.9729 0.9383 0.8732 0.7639 0.602 0.3958 0.1841 0.0362 

 13  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9995 0.9983 0.9948 0.9858 0.9647 0.9198 0.8329 0.6814 0.451 0.171 

 14  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9995 0.9984 0.9953 0.9866 0.9648 0.9126 0.7941 0.5367 

 15  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

16  0  0.4401 0.1853 0.07425 0.02815 0.01002 3.323E-03 1.015E-03 2.821E-04 7.011E-05 1.526E-05 2.827E-06 4.295E-07 5.071E-08 4.305E-09 2.328E-10 6.554E-12 6.568E-14 1.000E-16 1.526E-21 

 1  0.8108 0.5147 0.2839 0.1407 0.06348 0.02611 9.763E-03 3.291E-03 9.880E-04 2.594E-04 5.812E-05 1.074E-05 1.558E-06 1.650E-07 1.141E-08 4.260E-10 6.021E-12 1.450E-14 4.654E-19 

 2  0.9571 0.7892 0.5614 0.3518 0.1971 0.09936 0.04509 0.01834 6.620E-03 2.090E-03 5.650E-04 1.267E-04 2.254E-05 2.977E-06 2.629E-07 1.301E-08 2.591E-10 9.865E-13 6.657E-17 

 3  0.993 0.9316 0.7899 0.5981 0.405 0.2459 0.1339 0.06515 0.02813 0.01064 3.456E-03 9.385E-04 2.044E-04 3.360E-05 3.783E-06 2.479E-07 6.952E-09 4.181E-11 5.928E-15 

 4  0.9991 0.983 0.9209 0.7982 0.6302 0.4499 0.2892 0.1666 0.08531 0.03841 0.01494 4.896E-03 1.302E-03 2.658E-04 3.811E-05 3.301E-06 1.302E-07 1.236E-09 3.678E-13 

 5  0.9999 0.9967 0.9765 0.9183 0.8103 0.6598 0.49 0.3288 0.1976 0.1051 0.04862 0.01914 6.196E-03 1.566E-03 2.852E-04 3.261E-05 1.807E-06 2.703E-08 1.687E-11 

 6  1.000  0.9995 0.9944 0.9733 0.9204 0.8247 0.6881 0.5272 0.366 0.2272 0.1241 0.05832 0.02286 7.130E-03 1.644E-03 2.476E-04 1.922E-05 4.526E-07 5.917E-10 

 7  1.000  0.9999 0.9989 0.993 0.9729 0.9256 0.8406 0.7161 0.5629 0.4018 0.2559 0.1423 0.06706 0.02567 7.470E-03 1.476E-03 1.602E-04 5.924E-06 1.620E-08 

 8  1.000  1.000  0.9998 0.9985 0.9925 0.9743 0.9329 0.8577 0.7441 0.5982 0.4371 0.2839 0.1594 0.07435 0.02713 7.004E-03 1.059E-03 6.133E-05 3.497E-07 

 9  1.000  1.000  1.000  0.9998 0.9984 0.9929 0.9771 0.9417 0.8759 0.7728 0.634 0.4728 0.3119 0.1753 0.07956 0.02666 5.586E-03 5.045E-04 5.983E-06 

 10  1.000  1.000  1.000  1.000  0.9997 0.9984 0.9938 0.9809 0.9514 0.8949 0.8024 0.6712 0.51 0.3402 0.1897 0.08169 0.02354 3.297E-03 8.090E-05 

 11  1.000  1.000  1.000  1.000  1.000  0.9997 0.9987 0.9951 0.9851 0.9616 0.9147 0.8334 0.7108 0.5501 0.3698 0.2018 0.07905 0.017 8.573E-04 

 12  1.000  1.000  1.000  1.000  1.000  1.000  0.9998 0.9991 0.9965 0.9894 0.9719 0.9349 0.8661 0.7541 0.595 0.4019 0.2101 0.06841 7.004E-03 

 13  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9994 0.9979 0.9934 0.9817 0.9549 0.9006 0.8029 0.6482 0.4386 0.2108 0.04294 

 14  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9997 0.999 0.9967 0.9902 0.9739 0.9365 0.8593 0.7161 0.4853 0.1892 

 15  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9997 0.999 0.9967 0.99 0.9719 0.9257 0.8147 0.5599 

 16  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

17  0  0.4181 0.1668 0.06311 0.02252 7.517E-03 2.326E-03 6.600E-04 1.693E-04 3.856E-05 7.629E-06 1.272E-06 1.718E-07 1.775E-08 1.291E-09 5.821E-11 1.311E-12 9.853E-15 1.000E-17 7.629E-23 

 1  0.7922 0.4818 0.2525 0.1182 0.05011 0.01928 6.701E-03 2.088E-03 5.749E-04 1.373E-04 2.771E-05 4.553E-06 5.781E-07 5.252E-08 3.027E-09 9.044E-11 9.590E-13 1.540E-15 2.472E-20 

 2  0.9497 0.7618 0.5198 0.3096 0.1637 0.07739 0.03273 0.01232 4.086E-03 1.175E-03 2.862E-04 5.712E-05 8.903E-06 1.009E-06 7.427E-08 2.943E-09 4.399E-11 1.117E-13 3.770E-18 

 3  0.9912 0.9174 0.7556 0.5489 0.353 0.2019 0.1028 0.04642 0.01845 6.363E-03 1.866E-03 4.514E-04 8.621E-05 1.216E-05 1.143E-06 5.999E-08 1.263E-09 5.069E-12 3.596E-16 

 4  0.9988 0.9779 0.9013 0.7582 0.5739 0.3887 0.2348 0.126 0.05958 0.02452 8.623E-03 2.521E-03 5.887E-04 1.033E-04 1.236E-05 8.586E-07 2.544E-08 1.612E-10 2.402E-14 

 5  0.9999 0.9953 0.9681 0.8943 0.7653 0.5968 0.4197 0.2639 0.1471 0.07173 0.0301 0.01059 3.015E-03 6.560E-04 9.989E-05 9.164E-06 3.817E-07 3.815E-09 1.193E-12 



EM 1110-1-4014 
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B-7 

n k p=0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

 6  1.000  0.9992 0.9917 0.9623 0.8929 0.7752 0.6188 0.4478 0.2902 0.1662 0.08259 0.03481 0.01203 3.235E-03 6.250E-04 7.561E-05 4.419E-06 6.959E-08 4.561E-11 

 7  1.000  0.9999 0.9983 0.9891 0.9598 0.8954 0.7872 0.6405 0.4743 0.3145 0.1834 0.0919 0.03833 0.01269 3.101E-03 4.932E-04 4.037E-05 9.998E-07 1.372E-09 

 8  1.000  1.000  0.9997 0.9974 0.9876 0.9597 0.9006 0.8011 0.6626 0.5 0.3374 0.1989 0.09938 0.04028 0.01238 2.581E-03 2.950E-04 1.146E-05 3.287E-08 

 9  1.000  1.000  1.000  0.9995 0.9969 0.9873 0.9617 0.9081 0.8166 0.6855 0.5257 0.3595 0.2128 0.1046 0.04024 0.01093 1.738E-03 1.056E-04 6.314E-07 

 10  1.000  1.000  1.000  0.9999 0.9994 0.9968 0.988 0.9652 0.9174 0.8338 0.7098 0.5522 0.3812 0.2248 0.1071 0.03766 8.280E-03 7.838E-04 9.728E-06 

 11  1.000  1.000  1.000  1.000  0.9999 0.9993 0.997 0.9894 0.9699 0.9283 0.8529 0.7361 0.5803 0.4032 0.2347 0.1057 0.03187 4.667E-03 1.197E-04 

 12  1.000  1.000  1.000  1.000  1.000  0.9999 0.9994 0.9975 0.9914 0.9755 0.9404 0.874 0.7652 0.6113 0.4261 0.2418 0.09871 0.02214 1.165E-03 

 13  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9995 0.9981 0.9936 0.9816 0.9536 0.8972 0.7981 0.647 0.4511 0.2444 0.08264 8.801E-03 

 14  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9997 0.9988 0.9959 0.9877 0.9673 0.9226 0.8363 0.6904 0.4802 0.2382 0.05025 

 15  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9994 0.9979 0.9933 0.9807 0.9499 0.8818 0.7475 0.5182 0.2078 

 16  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9998 0.9993 0.9977 0.9925 0.9775 0.9369 0.8332 0.5819 

 17  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

18  0  0.3972 0.1501 0.05365 0.01801 5.638E-03 1.628E-03 4.290E-04 1.016E-04 2.121E-05 3.815E-06 5.726E-07 6.872E-08 6.212E-09 3.874E-10 1.455E-11 2.621E-13 1.478E-15 1.000E-18 3.815E-24 

 1  0.7735 0.4503 0.2241 0.09908 0.03946 0.01419 4.587E-03 1.320E-03 3.336E-04 7.248E-05 1.317E-05 1.924E-06 2.139E-07 1.666E-08 8.004E-10 1.914E-11 1.522E-13 1.630E-16 1.308E-21 

 2  0.9419 0.7338 0.4797 0.2713 0.1353 0.05995 0.02362 8.226E-03 2.506E-03 6.561E-04 1.440E-04 2.558E-05 3.492E-06 3.394E-07 2.084E-08 6.609E-10 7.413E-12 1.256E-14 2.120E-19 

 3  0.9891 0.9018 0.7202 0.501 0.3057 0.1646 0.07827 0.03278 0.01198 3.769E-03 9.971E-04 2.148E-04 3.596E-05 4.355E-06 3.414E-07 1.435E-08 2.269E-10 6.074E-13 2.156E-17 

 4  0.9985 0.9718 0.8794 0.7164 0.5187 0.3327 0.1886 0.09417 0.04107 0.01544 4.907E-03 1.279E-03 2.621E-04 3.950E-05 3.948E-06 2.197E-07 4.890E-09 2.068E-11 1.543E-15 

 5  0.9998 0.9936 0.9581 0.8671 0.7175 0.5344 0.355 0.2088 0.1077 0.04813 0.01829 5.750E-03 1.438E-03 2.691E-04 3.425E-05 2.520E-06 7.888E-08 5.266E-10 8.247E-14 

 6  1.000  0.9988 0.9882 0.9487 0.861 0.7217 0.5491 0.3743 0.2258 0.1189 0.05372 0.02028 6.169E-03 1.430E-03 2.312E-04 2.245E-05 9.873E-07 1.039E-08 3.414E-12 

 7  1.000  0.9998 0.9973 0.9837 0.9431 0.8593 0.7283 0.5634 0.3915 0.2403 0.128 0.05765 0.02123 6.073E-03 1.244E-03 1.591E-04 9.812E-06 1.626E-07 1.119E-10 

 8  1.000  1.000  0.9995 0.9957 0.9807 0.9404 0.8609 0.7368 0.5778 0.4073 0.2527 0.1347 0.05969 0.02097 5.422E-03 9.109E-04 7.857E-05 2.046E-06 2.947E-09 

 9  1.000  1.000  0.9999 0.9991 0.9946 0.979 0.9403 0.8653 0.7473 0.5927 0.4222 0.2632 0.1391 0.05959 0.01935 4.252E-03 5.115E-04 2.088E-05 6.280E-08 

 10  1.000  1.000  1.000  0.9998 0.9988 0.9939 0.9788 0.9424 0.872 0.7597 0.6085 0.4366 0.2717 0.1407 0.05695 0.01628 2.719E-03 1.735E-04 1.086E-06 

 11  1.000  1.000  1.000  1.000  0.9998 0.9986 0.9938 0.9797 0.9463 0.8811 0.7742 0.6257 0.4509 0.2783 0.139 0.05127 0.01182 1.172E-03 1.523E-05 

 12  1.000  1.000  1.000  1.000  1.000  0.9997 0.9986 0.9942 0.9817 0.9519 0.8923 0.7912 0.645 0.4656 0.2825 0.1329 0.0419 6.415E-03 1.720E-04 

 13  1.000  1.000  1.000  1.000  1.000  1.000  0.9997 0.9987 0.9951 0.9846 0.9589 0.9058 0.8114 0.6673 0.4813 0.2836 0.1206 0.02819 1.546E-03 

 14  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9998 0.999 0.9962 0.988 0.9672 0.9217 0.8354 0.6943 0.499 0.2798 0.0982 0.01087 

 15  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9993 0.9975 0.9918 0.9764 0.94 0.8647 0.7287 0.5203 0.2662 0.05813 

 16  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9997 0.9987 0.9954 0.9858 0.9605 0.9009 0.7759 0.5497 0.2265 
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B-8 

n k p=0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

 17  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9996 0.9984 0.9944 0.982 0.9464 0.8499 0.6028 

 18  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

19  0  0.3774 0.1351 0.0456 0.01441 4.228E-03 1.140E-03 2.788E-04 6.094E-05 1.167E-05 1.907E-06 2.577E-07 2.749E-08 2.174E-09 1.162E-10 3.638E-12 5.243E-14 2.217E-16 1.000E-19 1.907E-25 

 1  0.7547 0.4203 0.1985 0.08287 0.03101 0.01042 3.132E-03 8.328E-04 1.930E-04 3.815E-05 6.241E-06 8.109E-07 7.889E-08 5.269E-09 2.110E-10 4.037E-12 2.409E-14 1.720E-17 6.905E-23 

 2  0.9335 0.7054 0.4413 0.2369 0.1113 0.04622 0.01696 5.464E-03 1.528E-03 3.643E-04 7.206E-05 1.139E-05 1.361E-06 1.135E-07 5.810E-09 1.475E-10 1.241E-12 1.402E-15 1.184E-20 

 3  0.9868 0.885 0.6841 0.4551 0.2631 0.1332 0.05914 0.02296 7.719E-03 2.213E-03 5.279E-04 1.013E-04 1.486E-05 1.544E-06 1.010E-07 3.399E-09 4.033E-11 7.204E-14 1.280E-18 

 4  0.998 0.9648 0.8556 0.6733 0.4654 0.2822 0.15 0.06961 0.02798 9.605E-03 2.756E-03 6.407E-04 1.151E-04 1.490E-05 1.243E-06 5.542E-08 9.263E-10 2.615E-12 9.762E-17 

 5  0.9998 0.9914 0.9463 0.8369 0.6678 0.4739 0.2968 0.1629 0.07771 0.03178 0.01093 3.068E-03 6.736E-04 1.084E-04 1.152E-05 6.797E-07 1.599E-08 7.128E-11 5.589E-15 

 6  1.000  0.9983 0.9837 0.9324 0.8251 0.6655 0.4812 0.3081 0.1727 0.08353 0.03423 0.01156 3.094E-03 6.173E-04 8.348E-05 6.506E-06 2.151E-07 1.513E-09 2.491E-13 

 7  1.000  0.9997 0.9959 0.9767 0.9225 0.818 0.6656 0.4878 0.3169 0.1796 0.08713 0.03523 0.01144 2.823E-03 4.844E-04 4.979E-05 2.311E-06 2.561E-08 8.840E-12 

 8  1.000  1.000  0.9992 0.9933 0.9713 0.9161 0.8145 0.6675 0.494 0.3238 0.1841 0.08847 0.03469 0.01054 2.288E-03 3.095E-04 2.013E-05 3.510E-07 2.537E-10 

 9  1.000  1.000  0.9999 0.9984 0.9911 0.9674 0.9125 0.8139 0.671 0.5 0.329 0.1861 0.08747 0.03255 8.903E-03 1.579E-03 1.435E-04 3.930E-06 5.939E-09 

 10  1.000  1.000  1.000  0.9997 0.9977 0.9895 0.9653 0.9115 0.8159 0.6762 0.506 0.3325 0.1855 0.08392 0.02875 6.658E-03 8.427E-04 3.614E-05 1.140E-07 

 11  1.000  1.000  1.000  1.000  0.9995 0.9972 0.9886 0.9648 0.9129 0.8204 0.6831 0.5122 0.3344 0.182 0.07746 0.02328 4.084E-03 2.733E-04 1.793E-06 

 12  1.000  1.000  1.000  1.000  0.9999 0.9994 0.9969 0.9884 0.9658 0.9165 0.8273 0.6919 0.5188 0.3345 0.1749 0.0676 0.01633 1.696E-03 2.306E-05 

 13  1.000  1.000  1.000  1.000  1.000  0.9999 0.9993 0.9969 0.9891 0.9682 0.9223 0.8371 0.7032 0.5261 0.3322 0.1631 0.0537 8.593E-03 2.407E-04 

 14  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9994 0.9972 0.9904 0.972 0.9304 0.85 0.7178 0.5346 0.3267 0.1444 0.03519 2.013E-03 

 15  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9995 0.9978 0.9923 0.977 0.9409 0.8668 0.7369 0.5449 0.3159 0.115 0.01324 

 16  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9996 0.9985 0.9945 0.983 0.9538 0.8887 0.7631 0.5587 0.2946 0.06655 

 17  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9998 0.9992 0.9969 0.9896 0.969 0.9171 0.8015 0.5797 0.2453 

 18  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9997 0.9989 0.9958 0.9856 0.9544 0.8649 0.6226 

 19  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

20  0  0.3585 0.1216 0.03876 0.01153 3.171E-03 7.979E-04 1.812E-04 3.656E-05 6.416E-06 9.537E-07 1.159E-07 1.100E-08 7.610E-10 3.487E-11 9.095E-13 1.049E-14 3.325E-17 1.000E-20 9.537E-27 

 1  0.7358 0.3917 0.1756 0.06918 0.02431 7.637E-03 2.133E-03 5.240E-04 1.114E-04 2.003E-05 2.950E-06 3.408E-07 2.903E-08 1.662E-09 5.548E-11 8.493E-13 3.802E-15 1.810E-18 3.633E-24 

 2  0.9245 0.6769 0.4049 0.2061 0.09126 0.03548 0.01212 3.611E-03 9.274E-04 2.012E-04 3.586E-05 5.041E-06 5.277E-07 3.773E-08 1.611E-09 3.273E-11 2.067E-13 1.557E-16 6.578E-22 

 3  0.9841 0.867 0.6477 0.4114 0.2252 0.1071 0.04438 0.01596 4.933E-03 1.288E-03 2.772E-04 4.734E-05 6.084E-06 5.427E-07 2.960E-08 7.978E-10 7.105E-12 8.466E-15 7.523E-20 

 4  0.9974 0.9568 0.8298 0.6296 0.4148 0.2375 0.1182 0.05095 0.01886 5.909E-03 1.531E-03 3.170E-04 4.994E-05 5.550E-06 3.865E-07 1.380E-08 1.732E-10 3.263E-13 6.097E-18 

 5  0.9997 0.9887 0.9327 0.8042 0.6172 0.4164 0.2454 0.1256 0.05533 0.02069 6.434E-03 1.612E-03 3.106E-04 4.294E-05 3.813E-06 1.803E-07 3.186E-09 9.481E-12 3.722E-16 
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n k p=0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

 6  1.000  0.9976 0.9781 0.9133 0.7858 0.608 0.4166 0.25 0.1299 0.05766 0.02141 6.466E-03 1.521E-03 2.610E-04 2.951E-05 1.845E-06 4.586E-08 2.155E-10 1.776E-14 

 7  1.000  0.9996 0.9941 0.9679 0.8982 0.7723 0.601 0.4159 0.252 0.1316 0.05803 0.02103 6.015E-03 1.279E-03 1.837E-04 1.516E-05 5.295E-07 3.923E-09 6.786E-13 

 8  1.000  0.9999 0.9987 0.99 0.9591 0.8867 0.7624 0.5956 0.4143 0.2517 0.1308 0.05653 0.01958 5.138E-03 9.354E-04 1.017E-04 4.983E-06 5.815E-08 2.108E-11 

 9  1.000  1.000  0.9998 0.9974 0.9861 0.952 0.8782 0.7553 0.5914 0.4119 0.2493 0.1275 0.05317 0.01714 3.942E-03 5.634E-04 3.863E-05 7.089E-07 5.380E-10 

 10  1.000  1.000  1.000  0.9994 0.9961 0.9829 0.9468 0.8725 0.7507 0.5881 0.4086 0.2447 0.1218 0.04796 0.01386 2.5950E-03 2.484E-04 7.151E-06 1.134E-08 

 11  1.000  1.000  1.000  0.9999 0.9991 0.9949 0.9804 0.9435 0.8692 0.7483 0.5857 0.4044 0.2376 0.1133 0.04093 9.982E-03 1.329E-03 5.986E-05 1.979E-07 

 12  1.000  1.000  1.000  1.000  0.9998 0.9987 0.994 0.979 0.942 0.8684 0.748 0.5841 0.399 0.2277 0.1018 0.03214 5.921E-03 4.156E-04 2.857E-06 

 13  1.000  1.000  1.000  1.000  1.000  0.9997 0.9985 0.9935 0.9786 0.9423 0.8701 0.75 0.5834 0.392 0.2142 0.08669 0.02194 2.386E-03 3.395E-05 

 14  1.000  1.000  1.000  1.000  1.000  1.000  0.9997 0.9984 0.9936 0.9793 0.9447 0.8744 0.7546 0.5836 0.3828 0.1958 0.06731 0.01125 3.293E-04 

 15  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9997 0.9985 0.9941 0.9811 0.949 0.8818 0.7625 0.5852 0.3704 0.1702 0.04317 2.574E-03 

 16  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9997 0.9987 0.9951 0.984 0.9556 0.8929 0.7748 0.5886 0.3523 0.133 0.0159 

 17  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9998 0.9991 0.9964 0.9879 0.9645 0.9087 0.7939 0.5951 0.3231 0.07548 

 18  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9995 0.9979 0.9924 0.9757 0.9308 0.8244 0.6083 0.2642 

 19  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9998 0.9992 0.9968 0.9885 0.9612 0.8784 0.6415 

 20  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

K has the binomial distribution with parameters n and p. The entries are the values of P(K ≤ k) for p ranging from 0.05 to 0.95 for values of n ranging from 1 
to 20. 
For n > 20, the qth quantile of K (a binomial random variable) may be approximated using the formula: Kq = np + Zq [np(1-p)]1/2, where Zq is the qth quantile 
of the standard normal distribution. 
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Table B-2 
Percentiles of the Chi-Square Distribution 
 

 p          
df 0.005 0.010 0.025 0.050 0.1 0.900 0.950 0.975 0.990 0.995 

1 3.93E-05 0.000157 0.000982 0.003932 0.01579 2.706 3.841 5.024 6.635 7.879 
2 0.01003 0.0201 0.05064 0.1026 0.2107 4.605 5.991 7.378 9.21 10.6 
3 0.07172 0.1148 0.2158 0.3518 0.5844 6.251 7.815 9.348 11.34 12.84 
4 0.207 0.2971 0.4844 0.7107 1.064 7.779 9.488 11.14 13.28 14.86 
5 0.4117 0.5543 0.8312 1.145 1.61 9.236 11.07 12.83 15.09 16.75 
6 0.6757 0.8721 1.237 1.635 2.204 10.64 12.59 14.45 16.81 18.55 
7 0.9893 1.239 1.69 2.167 2.833 12.02 14.07 16.01 18.48 20.28 
8 1.344 1.646 2.18 2.733 3.49 13.36 15.51 17.53 20.09 21.95 
9 1.735 2.088 2.7 3.325 4.168 14.68 16.92 19.02 21.67 23.59 
10 2.156 2.558 3.247 3.94 4.865 15.99 18.31 20.48 23.21 25.19 
11 2.603 3.053 3.816 4.575 5.578 17.28 19.68 21.92 24.72 26.76 
12 3.074 3.571 4.404 5.226 6.304 18.55 21.03 23.34 26.22 28.3 
13 3.565 4.107 5.009 5.892 7.042 19.81 22.36 24.74 27.69 29.82 
14 4.075 4.66 5.629 6.571 7.79 21.06 23.68 26.12 29.14 31.32 
15 4.601 5.229 6.262 7.261 8.547 22.31 25 27.49 30.58 32.8 
16 5.142 5.812 6.908 7.962 9.312 23.54 26.3 28.85 32 34.27 
17 5.697 6.408 7.564 8.672 10.09 24.77 27.59 30.19 33.41 35.72 
18 6.265 7.015 8.231 9.39 10.86 25.99 28.87 31.53 34.81 37.16 
19 6.844 7.633 8.907 10.12 11.65 27.2 30.14 32.85 36.19 38.58 
20 7.434 8.26 9.591 10.85 12.44 28.41 31.41 34.17 37.57 40 
21 8.034 8.897 10.28 11.59 13.24 29.62 32.67 35.48 38.93 41.4 
22 8.643 9.542 10.98 12.34 14.04 30.81 33.92 36.78 40.29 42.8 
23 9.26 10.2 11.69 13.09 14.85 32.01 35.17 38.08 41.64 44.18 
24 9.886 10.86 12.4 13.85 15.66 33.2 36.42 39.36 42.98 45.56 
25 10.52 11.52 13.12 14.61 16.47 34.38 37.65 40.65 44.31 46.93 
26 11.16 12.2 13.84 15.38 17.29 35.56 38.89 41.92 45.64 48.29 
27 11.81 12.88 14.57 16.15 18.11 36.74 40.11 43.19 46.96 49.64 
28 12.46 13.56 15.31 16.93 18.94 37.92 41.34 44.46 48.28 50.99 
29 13.12 14.26 16.05 17.71 19.77 39.09 42.56 45.72 49.59 52.34 
30 13.79 14.95 16.79 18.49 20.6 40.26 43.77 46.98 50.89 53.67 
40 20.71 22.16 24.43 26.51 29.05 51.81 55.76 59.34 63.69 66.77 
50 27.99 29.71 32.36 34.76 37.69 63.17 67.5 71.42 76.15 79.49 
60 35.53 37.48 40.48 43.19 46.46 74.4 79.08 83.3 88.38 91.95 
70 43.28 45.44 48.76 51.74 55.33 85.53 90.53 95.02 100.4 104.2 
80 51.17 53.54 57.15 60.39 64.28 96.58 101.9 106.6 112.3 116.3 
90 59.2 61.75 65.65 69.13 73.29 107.6 113.1 118.1 124.1 128.3 

100 67.33 70.06 74.22 77.93 82.36 118.5 124.3 129.6 135.8 140.2 

NOTE: Table generated using SAS, a statistical software package. 
Percentiles of the Chi-square distribution χp,υ are listed for various degrees of freedom υ: 
 p = P( χυ ≤ χp,υ). 
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Table B-3 
Values of the Parameter λ for Cohen’s Estimates 

 

 
Source: EPA/600/R-96/084.  
 
 
 
 
 



EM 1110-1-4014 
15 Jan 07 
 

B-12 

Table B-4 
Critical Values of D for the Discordance Test 

 
n Level of Significance, α  n Level of Significance, α 
 0.01 0.05   0.01 0.05 
3 1.155 1.153  31 3.119 2.759 
4 1.492 1.463  32 3.135 2.773 
5 1.749 1.672  33 3.150 2.786 
6 1.944 1.822  34 3.164 2.799 
7 2.097 1.938  35 3.178 2.811 
8 2.221 2.032  36 3.191 2.823 
9 2.323 2.110  37 3.204 2.835 
10 2.410 2.176  38 3.216 2.846 
    39 3.228 2.857 

11 2.485 2.234  40 3.240 2.866 
12 2.550 2.285     
13 2.607 2.331  41 3.251 2.877 
14 2.659 2.371  42 3.261 2.887 
15 2.705 2.409  43 3.271 2.896 
16 2.747 2.443  44 3.282 2.905 
17 2.785 2.475  45 3.292 2.914 
18 2.821 2.504  46 3.302 2.923 
19 2.854 2.532  47 3.310 2.931 
20 2.884 2.557  48 3.319 2.940 
    49 3.329 2.948 

21 2.912 2.580  50 3.336 2.956 
22 2.939 2.603     
23 2.963 2.624     
24 2.987 2.644     
25 3.009 2.663     
26 3.029 2.681     
27 3.049 2.698     
28 3.068 2.714     
29 3.085 2.730     
30 3.103 2.745     
       

Source: EPA/600/R-96/084. 

 
 
 
 



EM 1110-1-4014 
15 Jan 07 

 

B-13 

Table B-5 
Critical Values for Dixon’s Test (Extreme Value Test) 

 
n Level of Significance, α  
 0.10 0.05 0.01 
3 0.886 0.941 0.988 
4 0.679 0.765 0.889 
5 0.557 0.642 0.780 
6 0.482 0.560 0.698 
7 0.434 0.507 0.637 
8 0.479 0.554 0.683 
9 0.441 0.512 0.635 
10 0.409 0.477 0.597 
11 0.517 0.576 0.679 
12 0.490 0.546 0.642 
13 0.467 0.521 0.615 
14 0.492 0.546 0.641 
15 0.472 0.525 0.616 
16 0.454 0.507 0.595 
17 0.438 0.490 0.577 
18 0.424 0.475 0.561 
19 0.412 0.462 0.547 
20 0.401 0.450 0.535 
21 0.391 0.440 0.524 
22 0.382 0.430 0.514 
23 0.374 0.421 0.505 
24 0.367 0.413 0.497 
25 0.360 0.406 0.489 

Source: EPA/600/R-96/084. 
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Table B-6 
Critical Values for Duncan’s Multiple Range Test 
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Source: Mason et al. (1989). 
 
Table B-7 
Percentiles of the F Distribution 
 α = .01

df2\df1 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 60 120
1 4052 5000 5403 5625 5764 5859 5928 5981 6022 6056 6106 6157 6209 6235 6261 6313 6339
2 98.5 99 99.17 99.25 99.3 99.33 99.36 99.37 99.39 99.4 99.42 99.43 99.45 99.46 99.47 99.48 99.49
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 27.05 26.87 26.69 26.6 26.5 26.32 26.22
4 21.2 18 16.69 15.98 15.52 15.21 14.98 14.8 14.66 14.55 14.37 14.2 14.02 13.93 13.84 13.65 13.56
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.888 9.722 9.553 9.466 9.379 9.202 9.112
6 13.75 10.92 9.78 9.148 8.746 8.466 8.26 8.102 7.976 7.874 7.718 7.559 7.396 7.313 7.229 7.057 6.969
7 12.25 9.547 8.451 7.847 7.46 7.191 6.993 6.84 6.719 6.62 6.469 6.314 6.155 6.074 5.992 5.824 5.737
8 11.26 8.649 7.591 7.006 6.632 6.371 6.178 6.029 5.911 5.814 5.667 5.515 5.359 5.279 5.198 5.032 4.946
9 10.56 8.022 6.992 6.422 6.057 5.802 5.613 5.467 5.351 5.257 5.111 4.962 4.808 4.729 4.649 4.483 4.398

10 10.04 7.559 6.552 5.994 5.636 5.386 5.2 5.057 4.942 4.849 4.706 4.558 4.405 4.327 4.247 4.082 3.996
12 9.33 6.927 5.953 5.412 5.064 4.821 4.64 4.499 4.388 4.296 4.155 4.01 3.858 3.78 3.701 3.535 3.449
15 8.683 6.359 5.417 4.893 4.556 4.318 4.142 4.004 3.895 3.805 3.666 3.522 3.372 3.294 3.214 3.047 2.959
20 8.096 5.849 4.938 4.431 4.103 3.871 3.699 3.564 3.457 3.368 3.231 3.088 2.938 2.859 2.778 2.608 2.517
24 7.823 5.614 4.718 4.218 3.895 3.667 3.496 3.363 3.256 3.168 3.032 2.889 2.738 2.659 2.577 2.403 2.31
30 7.562 5.39 4.51 4.018 3.699 3.473 3.304 3.173 3.067 2.979 2.843 2.7 2.549 2.469 2.386 2.208 2.111
60 7.077 4.977 4.126 3.649 3.339 3.119 2.953 2.823 2.718 2.632 2.496 2.352 2.198 2.115 2.028 1.836 1.726
120 6.851 4.787 3.949 3.48 3.174 2.956 2.792 2.663 2.559 2.472 2.336 2.192 2.035 1.95 1.86 1.656 1.533

α = .025

df2\df1 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 60 120
1 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3 968.6 976.7 984.9 993.1 997.2 1001 1010 1014
2 38.51 39 39.17 39.25 39.3 39.33 39.36 39.37 39.39 39.4 39.41 39.43 39.45 39.46 39.46 39.48 39.49
3 17.44 16.04 15.44 15.1 14.88 14.73 14.62 14.54 14.47 14.42 14.34 14.25 14.17 14.12 14.08 13.99 13.95
4 12.22 10.65 9.979 9.605 9.364 9.197 9.074 8.98 8.905 8.844 8.751 8.657 8.56 8.511 8.461 8.36 8.309
5 10.01 8.434 7.764 7.388 7.146 6.978 6.853 6.757 6.681 6.619 6.525 6.428 6.329 6.278 6.227 6.123 6.069
6 8.813 7.26 6.599 6.227 5.988 5.82 5.695 5.6 5.523 5.461 5.366 5.269 5.168 5.117 5.065 4.959 4.904
7 8.073 6.542 5.89 5.523 5.285 5.119 4.995 4.899 4.823 4.761 4.666 4.568 4.467 4.415 4.362 4.254 4.199
8 7.571 6.059 5.416 5.053 4.817 4.652 4.529 4.433 4.357 4.295 4.2 4.101 3.999 3.947 3.894 3.784 3.728
9 7.209 5.715 5.078 4.718 4.484 4.32 4.197 4.102 4.026 3.964 3.868 3.769 3.667 3.614 3.56 3.449 3.392

10 6.937 5.456 4.826 4.468 4.236 4.072 3.95 3.855 3.779 3.717 3.621 3.522 3.419 3.365 3.311 3.198 3.14
12 6.554 5.096 4.474 4.121 3.891 3.728 3.607 3.512 3.436 3.374 3.277 3.177 3.073 3.019 2.963 2.848 2.787
15 6.2 4.765 4.153 3.804 3.576 3.415 3.293 3.199 3.123 3.06 2.963 2.862 2.756 2.701 2.644 2.524 2.461
20 5.871 4.461 3.859 3.515 3.289 3.128 3.007 2.913 2.837 2.774 2.676 2.573 2.464 2.408 2.349 2.223 2.156
24 5.717 4.319 3.721 3.379 3.155 2.995 2.874 2.779 2.703 2.64 2.541 2.437 2.327 2.269 2.209 2.08 2.01
30 5.568 4.182 3.589 3.25 3.026 2.867 2.746 2.651 2.575 2.511 2.412 2.307 2.195 2.136 2.074 1.94 1.866
60 5.286 3.925 3.343 3.008 2.786 2.627 2.507 2.412 2.334 2.27 2.169 2.061 1.944 1.882 1.815 1.667 1.581
120 5.152 3.805 3.227 2.894 2.674 2.515 2.395 2.299 2.222 2.157 2.055 1.945 1.825 1.76 1.69 1.53 1.433  D
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 α = .05

df2\df1 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 60 120
1 161.4 199.5 215.7 224.6 230.2 234 236.8 238.9 240.5 241.9 243.9 245.9 248 249.1 250.1 252.2 253.3
2 18.51 19 19.16 19.25 19.3 19.33 19.35 19.37 19.38 19.4 19.41 19.43 19.45 19.45 19.46 19.48 19.49
3 10.13 9.552 9.277 9.117 9.013 8.941 8.887 8.845 8.812 8.786 8.745 8.703 8.66 8.639 8.617 8.572 8.549
4 7.709 6.944 6.591 6.388 6.256 6.163 6.094 6.041 5.999 5.964 5.912 5.858 5.803 5.774 5.746 5.688 5.658
5 6.608 5.786 5.409 5.192 5.05 4.95 4.876 4.818 4.772 4.735 4.678 4.619 4.558 4.527 4.496 4.431 4.398
6 5.987 5.143 4.757 4.534 4.387 4.284 4.207 4.147 4.099 4.06 4 3.938 3.874 3.841 3.808 3.74 3.705
7 5.591 4.737 4.347 4.12 3.972 3.866 3.787 3.726 3.677 3.637 3.575 3.511 3.445 3.41 3.376 3.304 3.267
8 5.318 4.459 4.066 3.838 3.687 3.581 3.5 3.438 3.388 3.347 3.284 3.218 3.15 3.115 3.079 3.005 2.967
9 5.117 4.256 3.863 3.633 3.482 3.374 3.293 3.23 3.179 3.137 3.073 3.006 2.936 2.9 2.864 2.787 2.748

10 4.965 4.103 3.708 3.478 3.326 3.217 3.135 3.072 3.02 2.978 2.913 2.845 2.774 2.737 2.7 2.621 2.58
12 4.747 3.885 3.49 3.259 3.106 2.996 2.913 2.849 2.796 2.753 2.687 2.617 2.544 2.505 2.466 2.384 2.341
15 4.543 3.682 3.287 3.056 2.901 2.79 2.707 2.641 2.588 2.544 2.475 2.403 2.328 2.288 2.247 2.16 2.114
20 4.351 3.493 3.098 2.866 2.711 2.599 2.514 2.447 2.393 2.348 2.278 2.203 2.124 2.082 2.039 1.946 1.896
24 4.26 3.403 3.009 2.776 2.621 2.508 2.423 2.355 2.3 2.255 2.183 2.108 2.027 1.984 1.939 1.842 1.79
30 4.171 3.316 2.922 2.69 2.534 2.421 2.334 2.266 2.211 2.165 2.092 2.015 1.932 1.887 1.841 1.74 1.683
60 4.001 3.15 2.758 2.525 2.368 2.254 2.167 2.097 2.04 1.993 1.917 1.836 1.748 1.7 1.649 1.534 1.467
120 3.92 3.072 2.68 2.447 2.29 2.175 2.087 2.016 1.959 1.91 1.834 1.75 1.659 1.608 1.554 1.429 1.352

α = .10

df2\df1 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 60 120
1 39.86 49.5 53.59 55.83 57.24 58.2 58.91 59.44 59.86 60.19 60.71 61.22 61.74 62 62.26 62.79 63.06
2 8.526 9 9.162 9.243 9.293 9.326 9.349 9.367 9.381 9.392 9.408 9.425 9.441 9.45 9.458 9.475 9.483
3 5.538 5.462 5.391 5.343 5.309 5.285 5.266 5.252 5.24 5.23 5.216 5.2 5.184 5.176 5.168 5.151 5.143
4 4.545 4.325 4.191 4.107 4.051 4.01 3.979 3.955 3.936 3.92 3.896 3.87 3.844 3.831 3.817 3.79 3.775
5 4.06 3.78 3.619 3.52 3.453 3.405 3.368 3.339 3.316 3.297 3.268 3.238 3.207 3.191 3.174 3.14 3.123
6 3.776 3.463 3.289 3.181 3.108 3.055 3.014 2.983 2.958 2.937 2.905 2.871 2.836 2.818 2.8 2.762 2.742
7 3.589 3.257 3.074 2.961 2.883 2.827 2.785 2.752 2.725 2.703 2.668 2.632 2.595 2.575 2.555 2.514 2.493
8 3.458 3.113 2.924 2.806 2.726 2.668 2.624 2.589 2.561 2.538 2.502 2.464 2.425 2.404 2.383 2.339 2.316
9 3.36 3.006 2.813 2.693 2.611 2.551 2.505 2.469 2.44 2.416 2.379 2.34 2.298 2.277 2.255 2.208 2.184

10 3.285 2.924 2.728 2.605 2.522 2.461 2.414 2.377 2.347 2.323 2.284 2.244 2.201 2.178 2.155 2.107 2.082
12 3.177 2.807 2.606 2.48 2.394 2.331 2.283 2.245 2.214 2.188 2.147 2.105 2.06 2.036 2.011 1.96 1.932
15 3.073 2.695 2.49 2.361 2.273 2.208 2.158 2.119 2.086 2.059 2.017 1.972 1.924 1.899 1.873 1.817 1.787
20 2.975 2.589 2.38 2.249 2.158 2.091 2.04 1.999 1.965 1.937 1.892 1.845 1.794 1.767 1.738 1.677 1.643
24 2.927 2.538 2.327 2.195 2.103 2.035 1.983 1.941 1.906 1.877 1.832 1.783 1.73 1.702 1.672 1.607 1.571
30 2.881 2.489 2.276 2.142 2.049 1.98 1.927 1.884 1.849 1.819 1.773 1.722 1.667 1.638 1.606 1.538 1.499
60 2.791 2.393 2.177 2.041 1.946 1.875 1.819 1.775 1.738 1.707 1.657 1.603 1.543 1.511 1.476 1.395 1.348
120 2.748 2.347 2.13 1.992 1.896 1.824 1.767 1.722 1.684 1.652 1.601 1.545 1.482 1.447 1.409 1.32 1.265

NOTE: Table generated using SAS, a statistical software package.

  D
en

om
in

at
or

 D
eg

re
es

 o
f F

re
ed

om
, d

f 2
  D

en
om

in
at

or
 D

eg
re

es
 o

f F
re

ed
om

, d
f 2

Numerator Degrees of Freedom, df1

Numerator Degrees of Freedom, df1

 
 
 

Table B-8 
H-statistic for Confidence Limit on a Lognormal Mean 
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Source: Gilbert (1987). 
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Table B-9 
Quantiles of D’Agostino’s Test for Normality 
 

 
 
Source: Gilbert (1987).  
 
Table B-10 
Probabilities for the Small-Sample Mann-Kendall Test for Trend 
 

S n S n 

 4 5 8 9  6 7 10 

0 0.625 0.592 0.548 0.540 1 0.500 0.500 0.500 

2 0.375 0.408 0.452 0.460 3 0.360 0.386 0.431 

4 0.167 0.242 0.360 0.381 5 0.235 0.281 0.364 

6 0.042 0.117 0.274 0.306 7 0.136 0.191 0.300 

8  0.042 0.199 0.238 9 0.068 0.199 0.242 

10  0.0083 0.138 0.179 11 0.028 0.068 0.190 

12   0.089 0.130 13 0.0083 0.035 0.146 

14   0.054 0.090 15 0.0014 0.015 0.108 

16   0.031 0.060 17  0.0054 0.078 

18   0.016 0.038 19  0.0014 0.054 
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S n S n 

 4 5 8 9  6 7 10 

20   0.0071 0.022 21  0.00020 0.036 

22   0.0028 0.012 23   0.023 

24   0.00087 0.0063 25   0.014 

26   0.00019 0.0029 27   0.0083 

28   0.000025 0.0012 29   0.0046 

30    0.00043 31   0.0023 

32    0.00012 33   0.0011 

34    0.000025 35   0.00047 

36    0.0000028 37   0.00018 

     39   0.000058 

     41   0.000015 

     43   0.0000028 

     45   0.00000028 

Source: EPA/600/R-96/084. 
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Table B-11 
Confidence Levels for Nonparametric Prediction Limits 
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Source: EPA/530-SW-89-026. 
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Table B-12 
Nonparametric Confidence Intervals on a Proportion 
 

 
Source: Gilbert (1987). 
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Table B-13 
Factors for Calculating Normal Distribution One-Sided Tolerance Bounds 
 
Factors ),,1( npg α−′ for a Normal One-Sided %100)1( α− Tolerance Bound 
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Factors ),,1( npg α−′ for a Normal One-Sided %100)1( α− Tolerance Bound 
 

 
Source: Hahn and Meeker (1991). 
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Table B-14 
Factors for Calculating Normal Distribution Two-Sided Tolerance Intervals 
 

Factors ),,1( npg α− for a Normal Two-Sided %100)1( α− Tolerance Intervals to Contain at Least 
p100% of the Population 

 
 p = 0.90 p = 0.95 p = 0.99 

1 - α 0.90 0.95 0.99 0.9 0.95 0.99 0.90 0.95 0.99
n          

10 2.535 2.838 3.582 3.021 3.3819 4.268 3.970 4.445 5.609
11 2.463 2.737 3.397 2.935 3.2612 4.047 3.857 4.286 5.319
12 2.404 2.655 3.249 2.865 3.1633 3.872 3.765 4.157 5.089
13 2.355 2.587 3.129 2.806 3.0821 3.729 3.688 4.051 4.900
14 2.313 2.529 3.029 2.757 3.0135 3.610 3.623 3.960 4.744
15 2.278 2.480 2.944 2.714 2.9548 3.508 3.567 3.883 4.611
16 2.246 2.437 2.872 2.676 2.9038 3.422 3.517 3.816 4.497
17 2.219 2.399 2.808 2.644 2.859 3.346 3.474 3.757 4.398
18 2.194 2.366 2.753 2.614 2.8194 3.280 3.436 3.705 4.311
19 2.172 2.337 2.703 2.588 2.7841 3.221 3.402 3.659 4.233
20 2.152 2.310 2.659 2.565 2.7523 3.169 3.371 3.617 4.164
25 2.077 2.208 2.494 2.475 2.6313 2.972 3.252 3.458 3.906
30 2.025 2.140 2.385 2.413 2.5496 2.842 3.171 3.351 3.735
35 1.988 2.090 2.306 2.368 2.4902 2.748 3.112 3.273 3.612
40 1.959 2.052 2.247 2.334 2.4446 2.677 3.067 3.213 3.518
50 1.916 1.996 2.162 2.284 2.3788 2.576 3.001 3.126 3.385
60 1.887 1.958 2.103 2.249 2.3329 2.506 2.955 3.066 3.293
70 1.865 1.929 2.060 2.222 2.2987 2.454 2.921 3.021 3.225
80 1.848 1.907 2.026 2.202 2.2721 2.414 2.894 2.986 3.173
90 1.834 1.889 1.999 2.185 2.2506 2.382 2.872 2.958 3.130

100 1.823 1.874 1.977 2.172 2.2328 2.356 2.854 2.934 3.096
∞ 1.645 1.645 1.645 1.960 1.960 1.960 2.576 2.576 2.576
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Table B-15 
Standard Normal Distribution 

 Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
-3.4 0.0003369 0.0003248 0.0003131 0.0003018 0.0002909 0.0002803 0.0002701 0.0002602 0.0002507 0.0002415 
-3.3 0.0004834 0.0004665 0.0004501 0.0004342 0.0004189 0.0004041 0.0003897 0.0003758 0.0003624 0.0003495 
-3.2 0.0006871 0.0006637 0.0006410 0.0006190 0.0005976 0.0005770 0.0005571 0.0005377 0.0005190 0.0005009 
-3.1 0.0009676 0.0009354 0.0009043 0.0008740 0.0008447 0.0008164 0.0007888 0.0007622 0.0007364 0.0007114 
-3.0 0.001350 0.001306 0.001264 0.001223 0.001183 0.001144 0.001107 0.001070 0.001035 0.001001 

-2.9 0.001866 0.001807 0.001750 0.001695 0.001641 0.001589 0.001538 0.001489 0.001441 0.001395 
-2.8 0.002555 0.002477 0.002401 0.002327 0.002256 0.002186 0.002118 0.002052 0.001988 0.001926 
-2.7 0.003467 0.003364 0.003264 0.003167 0.003072 0.002980 0.002890 0.002803 0.002718 0.002635 
-2.6 0.004661 0.004527 0.004396 0.004269 0.004145 0.004025 0.003907 0.003793 0.003681 0.003573 
-2.5 0.006210 0.006037 0.005868 0.005703 0.005543 0.005386 0.005234 0.005085 0.004940 0.004799 

-2.4 0.008198 0.007976 0.007760 0.007549 0.007344 0.007143 0.006947 0.006756 0.006569 0.006387 
-2.3 0.01072 0.01044 0.01017 0.009903 0.009642 0.009387 0.009137 0.008894 0.008656 0.008424 
-2.2 0.01390 0.01355 0.01321 0.01287 0.01255 0.01222 0.01191 0.01160 0.01130 0.01101 
-2.1 0.01786 0.01743 0.01700 0.01659 0.01618 0.01578 0.01539 0.01500 0.01463 0.01426 
-2.0 0.02275 0.02222 0.02169 0.02118 0.02068 0.02018 0.01970 0.01923 0.01876 0.01831 

-1.9 0.02872 0.02807 0.02743 0.02680 0.02619 0.02559 0.02500 0.02442 0.02385 0.02330 
-1.8 0.03593 0.03515 0.03438 0.03362 0.03288 0.03216 0.03144 0.03074 0.03005 0.02938 
-1.7 0.04457 0.04363 0.04272 0.04182 0.04093 0.04006 0.03920 0.03836 0.03754 0.03673 
-1.6 0.05480 0.05370 0.05262 0.05155 0.05050 0.04947 0.04846 0.04746 0.04648 0.04551 
-1.5 0.06681 0.06552 0.06426 0.06301 0.06178 0.06057 0.05938 0.05821 0.05705 0.05592 

-1.4 0.08076 0.07927 0.07780 0.07636 0.07493 0.07353 0.07215 0.07078 0.06944 0.06811 
-1.3 0.09680 0.09510 0.09342 0.09176 0.09012 0.08851 0.08691 0.08534 0.08379 0.08226 
-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.09853 
-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 
-1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379 

-0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611 
-0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867 
-0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148 
-0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451 
-0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776 

-0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121 
-0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483 
-0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 
-0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247 
-0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641 

NOTE: Table generated using SAS, a statistical software package. The table entries are values of p , 
where p  = P (Z ≤ Zp ).  For example, P (Z ≤ 1.65) = 0.9505
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 Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 

3.5 0.9998                   
4.0 1.000                   
4.5 1.000                   
5.0 1.000                   

NOTE: Table generated using SAS, a statistical software package. The table entries are values of p , 
where p  = P(Z ≤ Zp ).  For example, P (Z ≤ 1.65) = 0.9505  
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Table B-16 
Poisson Probabilities 
 
 x 0.005 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 0.9950 0.9900 0.9802 0.9704 0.9608 0.9512 0.9418 0.9324 0.9231 0.9139 
1 0.004975 0.009900 0.01960 0.02911 0.03843 0.04756 0.05651 0.06527 0.07385 0.08225 
2 0.00001244 0.00004950 0.0001960 0.0004367 0.0007686 0.001189 0.001695 0.002284 0.002954 0.003701 
3 0.00000002073 0.0000001650 0.000001307 0.000004367 0.00001025 0.00001982 0.00003390 0.00005330 0.00007877 0.0001110 

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0 0.9048 0.8187 0.7408 0.6703 0.6065 0.5488 0.4966 0.4493 0.4066 0.3679
1 0.09048 0.1637 0.2222 0.2681 0.3033 0.3293 0.3476 0.3595 0.3659 0.3679
2 0.004524 0.01637 0.03334 0.05363 0.07582 0.09879 0.1217 0.1438 0.1647 0.1839
3 0.0001508 0.001092 0.003334 0.007150 0.01264 0.01976 0.02839 0.03834 0.04940 0.06131
4 0.000003770 0.00005458 0.0002500 0.0007150 0.001580 0.002964 0.004968 0.007669 0.01111 0.01533
5 0.00000007540 0.000002183 0.00001500 0.00005720 0.0001580 0.0003556 0.0006955 0.001227 0.002001 0.003066
6 0.000000001257 0.00000007278 0.0000007501 0.000003813 0.00001316 0.00003556 0.00008114 0.0001636 0.0003001 0.0005109
7 0.00000000001795 0.000000002079 0.00000003215 0.0000002179 0.0000009402 0.000003048 0.000008114 0.00001870 0.00003858 0.00007299

x 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0 0.3329 0.3012 0.2725 0.2466 0.2231 0.2019 0.1827 0.1653 0.1496 0.1353 
1 0.3662 0.3614 0.3543 0.3452 0.3347 0.3230 0.3106 0.2975 0.2842 0.2707 
2 0.2014 0.2169 0.2303 0.2417 0.2510 0.2584 0.2640 0.2678 0.2700 0.2707 
3 0.07384 0.08674 0.09979 0.1128 0.1255 0.1378 0.1496 0.1607 0.1710 0.1804 
4 0.02031 0.02602 0.03243 0.03947 0.04707 0.05513 0.06357 0.07230 0.08122 0.09022 
5 0.004467 0.006246 0.008432 0.01105 0.01412 0.01764 0.02162 0.02603 0.03086 0.03609 
6 0.0008190 0.001249 0.001827 0.002579 0.003530 0.004705 0.006124 0.007809 0.009773 0.01203 
7 0.0001287 0.0002141 0.0003393 0.0005158 0.0007564 0.001075 0.001487 0.002008 0.002653 0.003437 
8 0.00001770 0.00003212 0.00005514 0.00009026 0.0001418 0.0002151 0.0003161 0.0004518 0.0006300 0.0008593 
9 0.000002163 0.000004283 0.000007964 0.00001404 0.00002364 0.00003823 0.00005970 0.00009036 0.0001330 0.0001909 

x 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
0 0.1225 0.1108 0.1003 0.09072 0.08208 0.07427 0.06721 0.06081 0.05502 0.04979 
1 0.2572 0.2438 0.2306 0.2177 0.2052 0.1931 0.1815 0.1703 0.1596 0.1494 
2 0.2700 0.2681 0.2652 0.2613 0.2565 0.2510 0.2450 0.2384 0.2314 0.2240 
3 0.1890 0.1966 0.2033 0.2090 0.2138 0.2176 0.2205 0.2225 0.2237 0.2240 
4 0.09923 0.1082 0.1169 0.1254 0.1336 0.1414 0.1488 0.1557 0.1622 0.1680 
5 0.04168 0.04759 0.05378 0.06020 0.06680 0.07354 0.08036 0.08721 0.09405 0.1008 
6 0.01459 0.01745 0.02061 0.02408 0.02783 0.03187 0.03616 0.04070 0.04546 0.05041 
7 0.004376 0.005484 0.006773 0.008255 0.009941 0.01184 0.01395 0.01628 0.01883 0.02160 
8 0.001149 0.001508 0.001947 0.002477 0.003106 0.003847 0.004708 0.005698 0.006827 0.008102 
9 0.0002680 0.0003686 0.0004976 0.0006604 0.0008629 0.001111 0.001412 0.001773 0.002200 0.002701 

10 0.00005629 0.00008110 0.0001145 0.0001585 0.0002157 0.0002889 0.0003813 0.0004964 0.0006379 0.0008102 
11 0.00001075 0.00001622 0.00002393 0.00003458 0.00004903 0.00006829 0.00009359 0.0001263 0.0001682 0.0002210 
12 0.000001881 0.000002974 0.000004587 0.000006917 0.00001021 0.00001480 0.00002106 0.00002948 0.00004064 0.00005524 

x 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0
0 0.04505 0.04076 0.03688 0.03337 0.03020 0.02732 0.02472 0.02237 0.02024 0.01832 
1 0.1397 0.1304 0.1217 0.1135 0.1057 0.09837 0.09148 0.08501 0.07894 0.07326 
2 0.2165 0.2087 0.2008 0.1929 0.1850 0.1771 0.1692 0.1615 0.1539 0.1465 
3 0.2237 0.2226 0.2209 0.2186 0.2158 0.2125 0.2087 0.2046 0.2001 0.1954 
4 0.1733 0.1781 0.1823 0.1858 0.1888 0.1912 0.1931 0.1944 0.1951 0.1954 
5 0.1075 0.1140 0.1203 0.1264 0.1322 0.1377 0.1429 0.1477 0.1522 0.1563 
6 0.05553 0.06079 0.06616 0.07160 0.07710 0.08261 0.08810 0.09355 0.09893 0.1042 
7 0.02459 0.02779 0.03119 0.03478 0.03855 0.04248 0.04657 0.05079 0.05512 0.05954 
8 0.009529 0.01112 0.01287 0.01478 0.01687 0.01912 0.02154 0.02412 0.02687 0.02977 
9 0.003282 0.003952 0.004717 0.005584 0.006559 0.007647 0.008854 0.01019 0.01164 0.01323 

10 0.001018 0.001265 0.001557 0.001899 0.002296 0.002753 0.003276 0.003870 0.004541 0.005292 
11 0.0002868 0.0003679 0.0004670 0.0005868 0.0007304 0.0009010 0.001102 0.001337 0.001610 0.001925 
12 0.00007408 0.00009811 0.0001284 0.0001663 0.0002130 0.0002703 0.0003398 0.0004234 0.0005232 0.0006415 
13 0.00001766 0.00002415 0.00003260 0.00004349 0.00005736 0.00007485 0.00009671 0.0001238 0.0001570 0.0001974 
14 0.000003911 0.000005520 0.000007684 0.00001056 0.00001434 0.00001925 0.00002556 0.00003359 0.00004373 0.00005640 

μ
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 x 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
0 0.01657 0.01500 0.01357 0.01228 0.01111 0.01005 0.009095 0.008230 0.007447 0.006738 
1 0.06795 0.06298 0.05834 0.05402 0.04999 0.04624 0.04275 0.03950 0.03649 0.03369 
2 0.1393 0.1323 0.1254 0.1188 0.1125 0.1063 0.1005 0.09481 0.08940 0.08422 
3 0.1904 0.1852 0.1798 0.1743 0.1687 0.1631 0.1574 0.1517 0.1460 0.1404 
4 0.1951 0.1944 0.1933 0.1917 0.1898 0.1875 0.1849 0.1820 0.1789 0.1755 
5 0.1600 0.1633 0.1662 0.1687 0.1708 0.1725 0.1738 0.1747 0.1753 0.1755 
6 0.1093 0.1143 0.1191 0.1237 0.1281 0.1323 0.1362 0.1398 0.1432 0.1462 
7 0.06404 0.06859 0.07318 0.07778 0.08236 0.08692 0.09143 0.09586 0.1002 0.1044 
8 0.03282 0.03601 0.03933 0.04278 0.04633 0.04998 0.05371 0.05752 0.06138 0.06528 
9 0.01495 0.01681 0.01879 0.02091 0.02316 0.02554 0.02805 0.03068 0.03342 0.03627 

10 0.006130 0.007058 0.008081 0.009202 0.01042 0.01175 0.01318 0.01472 0.01637 0.01813 
11 0.002285 0.002695 0.003159 0.003681 0.004264 0.004914 0.005633 0.006425 0.007294 0.008242 
12 0.0007807 0.0009432 0.001132 0.001350 0.001599 0.001884 0.002206 0.002570 0.002978 0.003434 
13 0.0002462 0.0003047 0.0003744 0.0004568 0.0005536 0.0006665 0.0007976 0.0009489 0.001123 0.001321 
14 0.00007210 0.00009142 0.0001150 0.0001436 0.0001779 0.0002190 0.0002678 0.0003254 0.0003929 0.0004717 
15 0.00001971 0.00002560 0.00003297 0.00004211 0.00005338 0.00006716 0.00008390 0.0001041 0.0001284 0.0001572 

x 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0
0 0.006097 0.005517 0.004992 0.004517 0.004087 0.003698 0.003346 0.003028 0.002739 0.002479 
1 0.03109 0.02869 0.02646 0.02439 0.02248 0.02071 0.01907 0.01756 0.01616 0.01487 
2 0.07929 0.07458 0.07011 0.06585 0.06181 0.05798 0.05436 0.05092 0.04768 0.04462 
3 0.1348 0.1293 0.1239 0.1185 0.1133 0.1082 0.1033 0.09845 0.09377 0.08924 
4 0.1719 0.1681 0.1641 0.1600 0.1558 0.1515 0.1472 0.1428 0.1383 0.1339 
5 0.1753 0.1748 0.1740 0.1728 0.1714 0.1697 0.1678 0.1656 0.1632 0.1606 
6 0.1490 0.1515 0.1537 0.1555 0.1571 0.1584 0.1594 0.1601 0.1605 0.1606 
7 0.1086 0.1125 0.1163 0.1200 0.1234 0.1267 0.1298 0.1326 0.1353 0.1377 
8 0.06921 0.07314 0.07708 0.08099 0.08487 0.08870 0.09247 0.09616 0.09976 0.1033 
9 0.03922 0.04226 0.04539 0.04859 0.05187 0.05519 0.05856 0.06197 0.06540 0.06884 

10 0.02000 0.02198 0.02406 0.02624 0.02853 0.03091 0.03338 0.03594 0.03859 0.04130 
11 0.009273 0.01039 0.01159 0.01288 0.01426 0.01573 0.01730 0.01895 0.02070 0.02253 
12 0.003941 0.004502 0.005119 0.005797 0.006537 0.007343 0.008216 0.009160 0.01018 0.01126 
13 0.001546 0.001801 0.002087 0.002408 0.002766 0.003163 0.003603 0.004087 0.004618 0.005199 
14 0.0005632 0.0006688 0.0007901 0.0009288 0.001087 0.001265 0.001467 0.001693 0.001946 0.002228 
15 0.0001915 0.0002319 0.0002792 0.0003344 0.0003984 0.0004724 0.0005574 0.0006547 0.0007655 0.0008913 
16 0.00006104 0.00007535 0.00009248 0.0001128 0.0001370 0.0001653 0.0001986 0.0002373 0.0002823 0.0003342 
17 0.00001831 0.00002305 0.00002883 0.00003585 0.00004431 0.00005446 0.00006658 0.00008097 0.00009797 0.0001180 

x 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0
0 0.002243 0.002029 0.001836 0.001662 0.001503 0.001360 0.001231 0.001114 0.001008 0.0009119 
1 0.01368 0.01258 0.01157 0.01063 0.009772 0.008978 0.008247 0.007574 0.006954 0.006383 
2 0.04173 0.03901 0.03644 0.03403 0.03176 0.02963 0.02763 0.02575 0.02399 0.02234 
3 0.08485 0.08061 0.07653 0.07259 0.06881 0.06518 0.06170 0.05837 0.05518 0.05213 
4 0.1294 0.1249 0.1205 0.1162 0.1118 0.1076 0.1034 0.09923 0.09518 0.09123 
5 0.1579 0.1549 0.1519 0.1487 0.1454 0.1420 0.1385 0.1349 0.1314 0.1277 
6 0.1605 0.1601 0.1595 0.1586 0.1575 0.1562 0.1546 0.1529 0.1511 0.1490 
7 0.1399 0.1418 0.1435 0.1450 0.1462 0.1472 0.1480 0.1486 0.1489 0.1490 
8 0.1066 0.1099 0.1130 0.1160 0.1188 0.1215 0.1240 0.1263 0.1284 0.1304 
9 0.07228 0.07571 0.07911 0.08248 0.08581 0.08908 0.09229 0.09541 0.09846 0.1014 

10 0.04409 0.04694 0.04984 0.05279 0.05578 0.05879 0.06183 0.06488 0.06794 0.07098 
11 0.02445 0.02646 0.02855 0.03071 0.03296 0.03528 0.03766 0.04011 0.04261 0.04517 
12 0.01243 0.01367 0.01499 0.01638 0.01785 0.01940 0.02103 0.02273 0.02450 0.02635 
13 0.005832 0.006519 0.007263 0.008064 0.008926 0.009850 0.01084 0.01189 0.01301 0.01419 
14 0.002541 0.002887 0.003268 0.003687 0.004144 0.004644 0.005186 0.005774 0.006410 0.007094 
15 0.001033 0.001193 0.001373 0.001573 0.001796 0.002043 0.002317 0.002618 0.002949 0.003311 
16 0.0003940 0.0004624 0.0005405 0.0006292 0.0007296 0.0008428 0.0009701 0.001113 0.001272 0.001448 
17 0.0001414 0.0001686 0.0002003 0.0002369 0.0002790 0.0003272 0.0003823 0.0004450 0.0005161 0.0005964 
18 0.00004791 0.00005809 0.00007010 0.00008422 0.0001007 0.0001200 0.0001423 0.0001681 0.0001978 0.0002319 
19 0.00001538 0.00001895 0.00002324 0.00002837 0.00003446 0.00004168 0.00005018 0.00006017 0.00007185 0.00008545 
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 x 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0
0 0.0008251 0.0007466 0.0006755 0.0006113 0.0005531 0.0005005 0.0004528 0.0004097 0.0003707 0.0003355 
1 0.005858 0.005375 0.004931 0.004523 0.004148 0.003803 0.003487 0.003196 0.002929 0.002684 
2 0.02080 0.01935 0.01800 0.01674 0.01556 0.01445 0.01342 0.01246 0.01157 0.01073 
3 0.04922 0.04644 0.04380 0.04128 0.03889 0.03661 0.03446 0.03241 0.03047 0.02863 
4 0.08736 0.08360 0.07993 0.07637 0.07292 0.06957 0.06633 0.06319 0.06017 0.05725 
5 0.1241 0.1204 0.1167 0.1130 0.1094 0.1057 0.1021 0.09858 0.09507 0.09160 
6 0.1468 0.1445 0.1420 0.1394 0.1367 0.1339 0.1311 0.1282 0.1252 0.1221 
7 0.1489 0.1486 0.1481 0.1474 0.1465 0.1454 0.1442 0.1428 0.1413 0.1396 
8 0.1321 0.1337 0.1351 0.1363 0.1373 0.1381 0.1388 0.1392 0.1395 0.1396 
9 0.1042 0.1070 0.1096 0.1121 0.1144 0.1167 0.1187 0.1207 0.1224 0.1241 

10 0.07402 0.07703 0.08000 0.08294 0.08583 0.08866 0.09143 0.09412 0.09673 0.09926 
11 0.04777 0.05042 0.05309 0.05580 0.05852 0.06126 0.06400 0.06674 0.06947 0.07219 
12 0.02827 0.03025 0.03230 0.03441 0.03658 0.03880 0.04107 0.04338 0.04574 0.04813 
13 0.01544 0.01675 0.01814 0.01959 0.02110 0.02268 0.02432 0.02603 0.02779 0.02962 
14 0.007829 0.008616 0.009457 0.01035 0.01130 0.01231 0.01338 0.01450 0.01568 0.01692 
15 0.003706 0.004136 0.004602 0.005107 0.005652 0.006238 0.006867 0.007541 0.008260 0.009026 
16 0.001644 0.001861 0.002100 0.002362 0.002649 0.002963 0.003305 0.003676 0.004078 0.004513 
17 0.0006868 0.0007882 0.0009017 0.001028 0.001169 0.001325 0.001497 0.001687 0.001895 0.002124 
18 0.0002709 0.0003153 0.0003657 0.0004227 0.0004870 0.0005593 0.0006404 0.0007309 0.0008318 0.0009439 
19 0.0001012 0.0001195 0.0001405 0.0001646 0.0001922 0.0002237 0.0002595 0.0003001 0.0003459 0.0003974 
20 0.00003594 0.00004301 0.00005128 0.00006092 0.00007209 0.00008502 0.00009991 0.0001170 0.0001366 0.0001590 
21 0.00001215 0.00001475 0.00001783 0.00002147 0.00002575 0.00003077 0.00003663 0.00004347 0.00005139 0.00006056 

x 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0
0 0.0003035 0.0002747 0.0002485 0.0002249 0.0002035 0.0001841 0.0001666 0.0001507 0.0001364 0.0001234 
1 0.002459 0.002252 0.002063 0.001889 0.001729 0.001583 0.001449 0.001326 0.001214 0.001111 
2 0.009958 0.009234 0.008560 0.007933 0.007350 0.006808 0.006304 0.005836 0.005402 0.004998 
3 0.02689 0.02524 0.02368 0.02221 0.02083 0.01952 0.01828 0.01712 0.01602 0.01499 
4 0.05444 0.05174 0.04914 0.04665 0.04425 0.04196 0.03977 0.03766 0.03566 0.03374 
5 0.08820 0.08485 0.08158 0.07837 0.07523 0.07217 0.06919 0.06629 0.06347 0.06073 
6 0.1191 0.1160 0.1128 0.1097 0.1066 0.1034 0.1003 0.09722 0.09414 0.09109 
7 0.1378 0.1358 0.1338 0.1317 0.1294 0.1271 0.1247 0.1222 0.1197 0.1171 
8 0.1395 0.1392 0.1388 0.1382 0.1375 0.1366 0.1356 0.1344 0.1332 0.1318 
9 0.1256 0.1269 0.1280 0.1290 0.1299 0.1306 0.1311 0.1315 0.1317 0.1318 

10 0.1017 0.1040 0.1063 0.1084 0.1104 0.1123 0.1140 0.1157 0.1172 0.1186 
11 0.07488 0.07755 0.08018 0.08276 0.08530 0.08778 0.09020 0.09255 0.09482 0.09702 
12 0.05055 0.05299 0.05546 0.05793 0.06042 0.06291 0.06539 0.06787 0.07033 0.07277 
13 0.03149 0.03343 0.03541 0.03743 0.03951 0.04162 0.04376 0.04594 0.04815 0.05038 
14 0.01822 0.01958 0.02099 0.02246 0.02399 0.02556 0.02720 0.02888 0.03061 0.03238 
15 0.009840 0.01070 0.01162 0.01258 0.01359 0.01466 0.01577 0.01694 0.01816 0.01943 
16 0.004981 0.005485 0.006025 0.006604 0.007221 0.007878 0.008577 0.009318 0.01010 0.01093 
17 0.002374 0.002646 0.002942 0.003263 0.003610 0.003985 0.004389 0.004823 0.005289 0.005786 
18 0.001068 0.001205 0.001357 0.001523 0.001705 0.001904 0.002122 0.002358 0.002615 0.002893 
19 0.0004553 0.0005202 0.0005926 0.0006732 0.0007627 0.0008619 0.0009714 0.001092 0.001225 0.001370 
20 0.0001844 0.0002133 0.0002459 0.0002827 0.0003242 0.0003706 0.0004226 0.0004805 0.0005451 0.0006167 
21 0.00007113 0.00008328 0.00009720 0.0001131 0.0001312 0.0001518 0.0001751 0.0002014 0.0002310 0.0002643 
22 0.00002619 0.00003104 0.00003667 0.00004318 0.00005069 0.00005933 0.00006923 0.00008055 0.00009345 0.0001081  
 
 



EM 1110-1-4014 
15 Jan 07 

 

B-33 

x 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0
0 0.0001117 0.0001010 0.00009142 0.00008272 0.00007485 0.00006773 0.00006128 0.00005545 0.00005017 0.00004540 
1 0.001016 0.0009296 0.0008502 0.0007776 0.0007111 0.0006502 0.0005944 0.0005434 0.0004967 0.0004540 
2 0.004624 0.004276 0.003954 0.003655 0.003378 0.003121 0.002883 0.002663 0.002459 0.002270 
3 0.01402 0.01311 0.01226 0.01145 0.01070 0.009987 0.009322 0.008698 0.008114 0.007567 
4 0.03191 0.03016 0.02850 0.02691 0.02540 0.02397 0.02261 0.02131 0.02008 0.01892 
5 0.05807 0.05549 0.05300 0.05059 0.04827 0.04602 0.04386 0.04177 0.03976 0.03783 
6 0.08807 0.08509 0.08215 0.07926 0.07642 0.07363 0.07090 0.06822 0.06561 0.06306 
7 0.1145 0.1118 0.1091 0.1064 0.1037 0.1010 0.09825 0.09551 0.09279 0.09008 
8 0.1302 0.1286 0.1269 0.1251 0.1232 0.1212 0.1191 0.1170 0.1148 0.1126 
9 0.1317 0.1315 0.1311 0.1306 0.1300 0.1293 0.1284 0.1274 0.1263 0.1251 

10 0.1198 0.1210 0.1219 0.1228 0.1235 0.1241 0.1245 0.1249 0.1250 0.1251 
11 0.09913 0.1012 0.1031 0.1049 0.1067 0.1083 0.1098 0.1112 0.1125 0.1137 
12 0.07518 0.07755 0.07990 0.08219 0.08444 0.08663 0.08877 0.09084 0.09285 0.09478 
13 0.05262 0.05488 0.05716 0.05943 0.06171 0.06398 0.06624 0.06848 0.07071 0.07291 
14 0.03421 0.03607 0.03797 0.03990 0.04187 0.04387 0.04589 0.04794 0.05000 0.05208 
15 0.02075 0.02212 0.02354 0.02501 0.02652 0.02808 0.02968 0.03132 0.03300 0.03472 
16 0.01180 0.01272 0.01368 0.01469 0.01575 0.01685 0.01799 0.01918 0.02042 0.02170 
17 0.006318 0.006884 0.007485 0.008123 0.008799 0.009513 0.01027 0.01106 0.01189 0.01276 
18 0.003194 0.003518 0.003867 0.004242 0.004644 0.005074 0.005532 0.006021 0.006540 0.007091 
19 0.001530 0.001704 0.001893 0.002099 0.002322 0.002563 0.002824 0.003105 0.003408 0.003732 
20 0.0006960 0.0007837 0.0008802 0.0009864 0.001103 0.001230 0.001370 0.001522 0.001687 0.001866 
21 0.0003016 0.0003433 0.0003898 0.0004415 0.0004989 0.0005625 0.0006327 0.0007101 0.0007952 0.0008886 
22 0.0001248 0.0001436 0.0001648 0.0001887 0.0002155 0.0002455 0.0002790 0.0003163 0.0003578 0.0004039 
23 0.00004936 0.00005743 0.00006663 0.00007710 0.00008899 0.0001025 0.0001177 0.0001348 0.0001540 0.0001756 
24 0.00001872 0.00002201 0.00002582 0.00003020 0.00003523 0.00004098 0.00004755 0.00005503 0.00006354 0.00007317 

 
Source:  Kvanli et al. (1996). 
 
Table B-17 
Critical Values for the Rank-Sum Test 
 
 

 



EM 1110-1-4014 
15 Jan 07 
 

B-34 

 

 
Source: EPA/600/R-96/084. 
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Table B-18 
Approximate Critical Values )( rλ  for Rosner’s Test 
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Source: EPA/600/R-96/084. 
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Table B-19 
Coefficients for the Shapiro-Wilk W Test for Normality 
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Source: Gilbert (1987). 
 
Note: The coefficients listed in the table are denoted as a(n-i+1) in Appendix F. For the 
value of n listed on the top of each column, the rows list the values of a(n-i+1), where i = 1, 
…, k and k is the largest integer less than or equal to n/2. 
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Table B-20 
Quantiles Wα of the Shapiro-Wilk W Test for Normality 
 
 

 
Source: Gilbert (1987). 

 
Note: The assumption of normality is rejected at the (1 – α )100% level of confidence 
when the calculated value of W < Wα, where P(W ≤ Wα) = α. 
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Table B-21 
Critical Values for the Studentized Range Test  

a b a b a b
3 1.737 2.000 1.758 1.999 1.782 1.997
4 1.87 2.445 1.98 2.429 2.04 2.409
5 2.02 2.803 2.15 2.753 2.22 2.712

6 2.15 3.095 2.28 3.012 2.37 2.949
7 2.26 3.338 2.40 3.222 2.49 3.143
8 2.35 3.543 2.50 3.399 2.59 3.308
9 2.44 3.720 2.59 3.552 2.68 3.449
10 2.51 3.875 2.67 3.685 2.76 3.57

11 2.58 4.012 2.74 3.80 2.84 3.68
12 2.64 4.134 2.80 3.91 2.90 3.78
13 2.70 4.244 2.86 4.00 2.96 3.87
14 2.75 4.34 2.92 4.09 3.02 3.95
15 2.80 4.44 2.97 4.17 3.07 4.02

16 2.84 4.52 3.01 4.24 3.12 4.09
17 2.88 4.60 3.06 4.31 3.17 4.15
18 2.92 4.67 3.10 4.37 3.21 4.21
19 2.96 4.74 3.14 4.43 3.25 4.27
20 2.99 4.80 3.18 4.49 3.29 4.32

25 3.15 5.06 3.34 4.71 3.45 4.53
30 3.27 5.26 3.47 4.89 3.59 4.70
35 3.38 5.42 3.58 5.04 3.70 4.84
40 3.47 5.56 3.67 5.16 3.79 4.96
45 3.55 5.67 3.75 5.26 3.88 5.06

50 3.62 5.77 3.83 5.35 3.95 5.14
55 3.69 5.86 3.90 5.43 4.02 5.22
60 3.75 5.94 3.96 5.51 4.08 5.29
65 3.80 6.01 4.01 5.57 4.14 5.35
70 3.85 6.07 4.06 5.63 4.19 5.41

75 3.90 6.13 4.11 5.68 4.24 5.46
80 3.94 6.18 4.16 5.73 4.28 5.51
85 3.99 6.23 4.20 5.78 4.33 5.56
90 4.02 6.27 4.24 5.82 4.36 5.60
95 4.06 6.32 4.27 5.86 4.40 5.64

100 4.10 6.36 4.31 5.90 4.44 5.68
150 4.38 6.64 4.59 6.18 4.72 5.96
200 4.59 6.84 4.78 6.39 4.90 6.15
500 5.13 7.42 5.47 6.94 5.49 6.72

1000 5.57 7.80 5.79 7.33 5.92 7.11

n

Level of Significance, α
0.01 0.05 0.1

 
Source: EPA/600/R-96/084. 
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Table B-22 
Percentage Points of the Studentized Range 
 

05.0=α  
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01.0=α  

 

 
 

 
 
Source: Mason et al. (1989). 
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Table B-23 
Critical Values of Student’s t-Distribution 
 

p         
df 0.8 0.9 0.95 0.975 0.99 0.995 0.999 0.9995 
1  1.376  3.078  6.314  12.71  31.82  63.66  318.3  636.6  
2  1.061  1.886  2.920  4.303  6.965  9.925  22.33  31.60  
3  0.9785  1.638  2.353  3.182  4.541  5.841  10.21  12.92  
4  0.9410  1.533  2.132  2.776  3.747  4.604  7.173  8.610  
5  0.9195  1.476  2.015  2.571  3.365  4.032  5.893  6.869  
6  0.9057  1.440  1.943  2.447  3.143  3.707  5.208  5.959  
7  0.8960  1.415  1.895  2.365  2.998  3.499  4.785  5.408  
8  0.8889  1.397  1.860  2.306  2.896  3.355  4.501  5.041  
9  0.8834  1.383  1.833  2.262  2.821  3.250  4.297  4.781  

10  0.8791  1.372  1.812  2.228  2.764  3.169  4.144  4.587  
11  0.8755  1.363  1.796  2.201  2.718  3.106  4.025  4.437  
12  0.8726  1.356  1.782  2.179  2.681  3.055  3.930  4.318  
13  0.8702  1.350  1.771  2.160  2.650  3.012  3.852  4.221  
14  0.8681  1.345  1.761  2.145  2.624  2.977  3.787  4.140  
15  0.8662  1.341  1.753  2.131  2.602  2.947  3.733  4.073  
16  0.8647  1.337  1.746  2.120  2.583  2.921  3.686  4.015  
17  0.8633  1.333  1.740  2.110  2.567  2.898  3.646  3.965  
18  0.8620  1.330  1.734  2.101  2.552  2.878  3.610  3.922  
19  0.8610  1.328  1.729  2.093  2.539  2.861  3.579  3.883  
20  0.8600  1.325  1.725  2.086  2.528  2.845  3.552  3.850  
21  0.8591  1.323  1.721  2.080  2.518  2.831  3.527  3.819  
22  0.8583  1.321  1.717  2.074  2.508  2.819  3.505  3.792  
23  0.8575  1.319  1.714  2.069  2.500  2.807  3.485  3.768  
24  0.8569  1.318  1.711  2.064  2.492  2.797  3.467  3.745  
25  0.8562  1.316  1.708  2.060  2.485  2.787  3.450  3.725  
26  0.8557  1.315  1.706  2.056  2.479  2.779  3.435  3.707  
27  0.8551  1.314  1.703  2.052  2.473  2.771  3.421  3.690  
28  0.8546  1.313  1.701  2.048  2.467  2.763  3.408  3.674  
29  0.8542  1.311  1.699  2.045  2.462  2.756  3.396  3.659  
30  0.8538  1.310  1.697  2.042  2.457  2.750  3.385  3.646  
40  0.8507  1.303  1.684  2.021  2.423  2.704  3.307  3.551  
60  0.8477  1.296  1.671  2.000  2.390  2.660  3.232  3.460  
120  0.8446  1.289  1.658  1.980  2.358  2.617  3.160  3.373  

 0.8417  1.282  1.645  1.960  2.327  2.576  3.091  3.291  

NOTE: Table generated using SAS, a statistical software package. The percentiles tp,ν are 
listed for various values of degrees of freedom (df), ν: p = P( tν ≤ tp,ν ). 
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Table B-24 
Quantiles of the Wilcoxon Signed Rank Test 
 

n w0.01 w0.05 w0.10 w0.20 

4 0 0 1 3 
5 0 1 3 4 
6 0 3 4 6 
7 1 4 6 9 
8 2 6 9 12 
9 4 9 11 15 

10 6 11 15 19 
11 8 14 18 23 
12 10 18 22 28 
13 13 22 27 33 
14 16 26 32 39 
15 20 31 37 45 
16 24 36 43 51 
17 28 42 49 58 
18 33 48 56 66 
19 38 54 63 74 
20 44 61 70 82 

 
Source: EPA/600/R-96/084. 



EM 1110-1-4014 
15 Jan 07 

 

B-45 

 
 
Table B-25 
Modified Quantile Test Critical Numbers Level of Significance (α ) 
 

For Approximately 10.0=α  
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For Approximately 10.0=α  
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For Approximately 05.0=α  
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For Approximately 05.0=α  

 
 

 
 
Source: EPA/600/R-96/084. 
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Table B-26 
Dunnett’s Test (One-Tailed) Total Number of Investigate Groups (K - 1) 
 

 

 
Source: EPA/600/R-96/084. 
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Table B-27 
Upper Tail Critical Values for the F-Max Test 
 

 

 
Source: Mason et al. (1989). 
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Table B-28 
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Source: fpower.sas macro retrieved from http://www.math.yorku.ca/SCS/Online/power/ 
on 1 March 1 2005. 
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APPENDIX C 
Sampling Strategies 

 
C-1 Introduction.  As addressed in USACE’s Technical Project Planning—Phase I, project 
technical staff must consider which sampling strategy is appropriate for the current project phase 
(EM 200-1-2). It is not necessary to apply the same strategy throughout all phases of a project’s 
life cycle. Frequently, early screening sampling may employ a simple strategy, and subsequent 
phases may require more complicated strategies, using data results from previous phases. When-
ever possible, it is best to use available site knowledge in developing a sampling strategy. 
 
 C-1.1  Although there are many sampling approaches, this Appendix presents a discus-
sion of the most commonly employed strategies, which are:  
 

• No sampling. 
• Judgmental sampling. 
• Random sampling. 
 - Simple random sampling. 
 - Stratified random sampling. 
 - Systematic and grid sampling. 
• Ranked set sampling. 
• Composite sampling. 
• Adaptive sampling. 

 
 C-1.2  The first two strategies are qualitative; the remaining strategies are probabilistic. 
In the latter, statistics may be used to estimate sample characteristics such as mean, standard de-
viation, and uncertainties. Whether performing on-site, field, or off-site laboratory analysis, the 
sampling design requires equal consideration. For further insights into environmental sampling, 
see Gilbert (1987) and EPA/600/R-96/084. 
 
C-2 No Sampling.  It may be possible to establish the absence of human health or environ-
mental risk without any sampling. There are three criteria necessary to create a quantifiable risk: 
i) a chemical release to the environment; ii) a pathway of exposure; and iii) an exposed popula-
tion. If any of these conditions are not satisfied, a risk does not exist and sampling is not re-
quired.  
 
 C-2.1  Historical quantitative and qualitative information available during the early stages 
of a project’s life cycle may be adequate for site closure without sampling. Qualitative data are 
typically not as expensive to collect as quantitative data and may be more informative than quan-
titative data for answering questions about hazardous, toxic, and radioactive waste sites. 
 
 C-2.2  Historical qualitative and quantitative data hold an array of site information useful 
in reaching a conclusion. The reliability and applicability of historical data and qualitative infor-
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mation (such as interviews with site personnel and photographs) should be evaluated. For exam-
ple, have historical chemical data been gathered using comparable methods? Is the set of mate-
rial safety data sheets complete and current? Do toxicity data derived from studies demonstrate 
adequate quality control? Are engineering drawings pre-construction or “as-builts”? Statistical 
techniques are often critical to assessing the usability of quantitative historical data, particularly 
when incorporating historical data into more recent data sets. Simple descriptive statistics (such 
as the mean, standard deviation, and range) and statistical plots (such as box-and-whisker plots) 
are useful for qualitative comparisons of different data sets (Appendices G and J). Quantitative 
statistical comparisons are also frequently appropriate. For example, it may be desirable to com-
pare the mean or variance of a prior data set to a recent data set (Appendix M). When quantita-
tive statistical comparisons are made, the data should also be evaluated to verify that they satisfy 
the underlying assumptions of the statistical tests (for example, random sampling and adequate 
numbers of samples). 
 
C-3 Judgmental Sampling.  Perhaps the most common sampling strategy is judgmental 
sampling (also known as targeted or biased sampling). As the name implies, this sampling strat-
egy relies upon the investigator’s knowledge and experience. Judgmental sampling is the selec-
tion of samples without a statistical design, that is, without any randomization. It can be useful 
when good documentary data are available and when it is done by an experienced professional 
with technical expertise. Judgmental sampling is frequently used to target high-contaminant con-
centrations or worst-case site conditions, such as the collection of samples in visibly stained 
soils. The underlying rationale for this approach is that, if contamination were not detected (or 
detected at acceptable levels) in the areas of the site that would have been most impacted by site-
related waste handling activities, then acceptable levels of contamination could be assumed in 
the remaining portions of the study site. However, if unacceptable levels of contamination were 
detected, the results would be inappropriate for evaluating site-wide average concentrations. An 
example of judgmental sampling is presented below to illustrate a common improper use of the 
sampling technique. 
 
C-4 Case Study 1—Judgmental Sampling, Ordnance Demolition Area. 
 
 C-4.1  The project team used judgmental sampling to obtain a worst-case estimate of ex-
plosive residues in surface soils associated with an ordnance demolition area. They did this by 
sampling where activities historically occurred, specifically targeting stained soils, pits, and  
debris-laden areas. The team collected background samples and compared group means and vari-
ances. They found a statistically significant increase in on-site concentrations relative to the 
background samples for several explosive residues, concluded that the entire site was contami-
nated with explosives, and scheduled the area for further investigation and remediation.  
 
 C-4.2  In this case, it was incorrect for the project team to compare judgmental non-
randomized data sets in a statistically quantitative manner. This problem is common in using his-
torical data. One of the primary assumptions in conducting any statistical analysis is that data 
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were obtained in a random fashion. The fact that the on-site samples were biased toward areas of 
known or suspected high concentration increased the probability that the on-site average concen-
tration would exceed background, potentially leading to biased conclusions. Either the initial 
round of sampling should have been performed randomly or new samples should be randomly 
collected and submitted for analysis prior to concluding the presence of site-wide contamination. 
Alternatively, it might be possible to stratify the site in such a manner that the judgmental sam-
ples are representative of only select portions of the entire study area. See Section II of Chapter 3 
for further discussion of comparing on-site to background concentrations.  
 
C-5 Random Sampling.  The term random sampling encompasses a set of unbiased tech-
niques to choose locations from which to sample at a site. Random sampling has the advantage 
that its lack of bias allows for robust statistical calculations. However, random sampling is not 
the same as arbitrary sampling; it does not mean “sample in any manner.” The sampling design 
must be such that every portion of the population possesses an equal opportunity of being se-
lected in the sample. Therefore, when implementing a random sampling design, planners must 
define and consider the entire population. Both the spatial and temporal boundaries of the envi-
ronmental population must be well-defined, as instructed in EPA/600/R-96/055, QA/G-4. Sam-
ples may need to be collected randomly, not just horizontally across a study area, but vertically 
as well. Likewise, a continuing waste stream would be sampled randomly in time. Three forms 
of random sampling are discussed in this paragraph: simple random sampling, stratified random 
sampling, and systematic random sampling. EPA Quality Assurance QA/G5-S, Guidance for 
Choosing a Sampling Design for Environmental Data Collection, describes the three random 
sampling methods in detail. 
 
 C-5.1  Simple Random Sampling.  In simple random sampling, sample locations are se-
lected using random numbers. Every possible set of locations has an equal chance of being se-
lected. For example, a simple random sample from a group of liquid waste drums may be taken 
by numbering all the drums and randomly selecting numbers from that list. Simple random sam-
pling does not presuppose any information regarding the spatial distribution of the likely con-
tamination at the site, other than assuming that no spatial correlation exists. Samples are 
collected at random from the study area without consideration for factors such as suspected dis-
posal activities, debris locations, spills, or other spatial control on contamination. 
 
 C-5.1.1  The major advantages of simple random sampling are that i) it provides statisti-
cally unbiased estimates of the mean, proportions, and variability; ii) it is easy to understand and 
use; and iii) sample size calculations and data analysis are simple to do.  
 
 C-5.1.2  The disadvantages of simple random sampling are as follows. 
 
 C-5.1.2.1  The environmental population must be relatively homogeneous for simple ran-
dom sampling to be effective. In particular, major spatial or temporal trends should not exist. 
Simple random sampling would be inappropriate if localized areas of high contamination or hot-
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spots exist. Because every portion of the site has an equal opportunity of being selected, if hot-
spots constitute a small portion of the total study area, it is likely that random sampling will fail 
to detect them. Under these circumstances, random sampling will give undue weight to the less 
contaminated portions of the site.  
 
 C-5.1.2.2  It is possible that, by random chance alone, the sample points will be clustered 
within a small portion of the study area and will not reliably characterize (e.g., owing to hetero-
geneity) the entire study area.  
 
 C-5.1.2.3  Random sampling is often less efficient and, as a result, more expensive than 
other sampling designs because it requires more samples to obtain the same result. It is most vi-
able when the target population or study area is small. The analytical costs may be offset by the 
streamlined sampling design, which requires less research than judgmental sampling. 
 
 C-5.2  Stratified Random Sampling.   
 
 C-5.2.1  In stratified sampling, the target population is separated into non-overlapping 
sub-populations, or strata, that are expected to be relatively homogeneous. Strata may be chosen 
on the basis of spatial or temporal proximity of the units or on the basis of existing information 
or professional judgment about the site or process. For instance, if an exposed population is 
likely to contact only surface soil rather than all soil, then the site could be divided into a surface 
soil stratum and subsurface soil stratum. Once the strata are defined, each stratum is randomly 
sampled. This approach allows the project team to focus on areas of greatest concern while re-
taining the benefits of a random sampling plan. Some examples of stratification at a hazardous 
waste site include different soil types, depth within an aquifer or surface water body, or separate 
waste ponds used at different times in site history. 
 
 C-5.2.2  Stratified random sampling can be a very effective approach to site characteriza-
tion. If there is less variation within each subpopulation than in the target population as a whole, 
stratified random sampling can be more efficient than simple random sampling. Other advan-
tages of this design are that it has potential for achieving greater precision in estimates of the 
mean and variance, and that it allows computation of reliable estimates for population subgroups 
of special interest. In fact, a well-constructed stratified sampling plan is the best alternative in 
most instances where judgmental sampling plans are now employed.  
 
 C-5.3  Systematic Random Sampling.  In systematic sampling, samples are taken at regu-
lar intervals in time or space, i.e., along some sort of grid. An initial location or time is selected 
at random, and subsequent samples are collected at regular spatial or temporal intervals. The 
sampling scheme retains its random characteristic as long as the initial sampling location or time 
is randomly, not arbitrarily, selected. 
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 C-5.3.1  Systematic sampling methods are used to search for hot-spots and to infer 
means, percentiles, or other parameters. They are also useful for estimating spatial patterns or 
trends over time. These designs provide practical and easy methods for designating sample loca-
tions and ensure uniform coverage of a site, unit, or process. One significant benefit of a system-
atic design is that it generally ensures that some samples from each possible subgroup within a 
population will be selected. 
 
 C-5.3.4  There are two approaches to grid sampling. One may select a particular grid pat-
tern and sample at every node within the grid. Although it is common for sampling plans to spec-
ify a square grid pattern, there are a variety of patterns that can be used, often to some advantage 
in terms of cost or efficacy. Grid blocks may be squares, rectangles, triangles, parallelograms, 
pentagons, hexagons, or other polygons, depending upon the application. Alternatively, one may 
randomly pick a starting point in a grid and then collect samples in some logical pattern (for ex-
ample, move south two blocks and east three blocks). When the edge of the grid is encountered, 
the pattern starts again on the opposite side of the grid. 
 
 C-5.3.5  One can immediately see that such an approach could be very expensive. This 
type of sampling is often reserved for situations where the analytical cost is low, or where the 
area to be covered is quite large, as in the estimation of lead analysis over a firing range using a 
portable x-ray fluorescence (XRF) spectrometer. An important consideration is the size of the in-
dividual blocks within the grid or the distance between grid lines. 
 
 C-5.4  Hot-Spot Sampling.  Searching for a hot-spot is a special case where grid spacing 
may be estimated using information about the suspected hot-spot size and shape. Hot-spots may 
be located on two-dimensional surfaces or in three-dimensional volumes. For volumes, a three-
dimensional grid is generated via the extension of a pair of two-dimensional grids. 
 
 C-5.4.1  This method relates the likelihood of successfully locating hot-spots based on 
their assumed size, shape, and orientation. The acceptable probability of not finding a hot-spot 
(β) must be specified at the outset. This value must be decided upon by the project team depend-
ing on the degree of risk associated with not identifying the hot-spot. Gilbert (1987) provides 
graphs (called nomographs) that correlate the shape of the hot-spot with the acceptable probabil-
ity of not finding the spot and the length of the hot-spot divided by the required grid spacing. Ta-
ble C-1 provides a summary of the nomographs for square and triangular grids. Users will need 
to interpolate, reference the original citation, or use a conservative set of values in applying this 
table to individual studies. 
 
 C-5.4.2  As mentioned above, to determine the grid spacing (G) for a hot-spot, assump-
tions must be made about its size and shape (Figure C-1). The shape is represented by the factor 
(S), defined as the width (W) of the elliptical target spot divided by the expected length (L). If the 
expected shape is a circle, S is equal to 1. If S is an ellipse, S is less than 1, but greater than 0. If S 
is unknown, planners may choose to assume that the hot-spot is a narrow elliptical shape, i.e., S 
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is 0.5 or less. This assumption is conservative. Accommodating a narrower target shape results in 
denser grid spacing. 
 
Table C-1 
Tabulation for Hot-Spot Grid Spacing 

For Square Sampling Grids—Values Listed Are L/G 
 S 
β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
0.0           1.00 0.80 0.77 0.74 0.70 
0.1       1.00 0.83 0.74 0.68 0.62 0.58 0.55 
0.2       0.87 0.77 0.68 0.62 0.58 0.53 0.51 
0.3     0.93 0.78 0.69 0.62 0.57 0.53 0.49 0.47 
0.4     0.85 0.72 0.64 0.58 0.53 0.49 0.47 0.44 
0.5   0.94 0.77 0.65 0.57 0.51 0.48 0.44 0.42 0.40 
0.6   0.83 0.68 0.58 0.51 0.47 0.43 0.41 0.39 0.37 
0.7 1.00 0.71 0.58 0.50 0.44 0.41 0.38 0.35 0.33 0.31 
0.8 0.78 0.56 0.44 0.49 0.35 0.32 0.30 0.28 0.27 0.26 
0.9 0.57 0.39 0.32 0.29 0.27 0.25 0.23 0.21 0.20 0.19 
1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

For Triangular Sampling Grids—Values Listed Are L/G 
 S 
β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
0.0         0.94 0.81 0.74 0.66 0.60 0.57 
0.1       0.90 0.78 0.69 0.62 0.57 0.52 0.50 
0.2     0.95 0.80 0.70 0.62 0.57 0.52 0.49 0.47 
0.3     0.87 0.73 0.63 0.57 0.52 0.48 0.46 0.43 
0.4   1.00 0.79 0.67 0.58 0.53 0.48 0.45 0.42 0.40 
0.5   0.86 0.69 0.59 0.52 0.48 0.43 0.41 0.39 0.37 
0.6   0.75 0.61 0.52 0.47 0.42 0.39 0.37 0.35 0.32 
0.7 0.94 0.84 0.52 0.44 0.40 0.37 0.33 0.31 0.30 0.28 
0.8 0.75 0.52 0.41 0.37 0.32 0.30 0.28 0.27 0.24 0.22 
0.9 0.51 0.36 0.30 0.25 0.22 0.20 1.90 1.80 1.70 1.70 
1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 

β = probability of missing the hot-spot S =W/L (ratio of width to length of hot-spot) 
W = width of elliptical hot-spot S = 1 is a circle 
L = length of the semi-major axis (radius of a circle) S = 0.1 is a narrow ellipse 
G = grid spacing L/G = a dimensionless value 
 
 C-5.4.3  Based on an estimate of the length of the target hot-spot, we may define the 
value (L), which is one-half of the long axis of the ellipse. In the case of a circular hot-spot (S = 
1), this is equivalent to the radius of the circle. Finally, the nomographs presented as Table C-1 
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may be used to determine the appropriate grid spacing (expressed in terms of L/G), based on the 
values of S and β. 
 

 
 

L 

W 

S =W/L 

 
 

Figure C-1.  Elliptical hotspot. 
 
 C-5.4.4  The effectiveness of the hot-spot sampling method depends on the accuracy of 
existing site-specific information. Without prior knowledge, it is difficult for planners to estimate 
the shape and dimensions of the anticipated hot-spot. In practice, this information is rarely 
known with confidence, and hot-spot spatial dimensions are often determined on the basis of 
economic considerations rather on the basis of pre-existing information on site conditions. The 
required number of samples depends greatly upon the assumed dimensions of the hot-spot. Plan-
ners should do a number of calculations, varying the shape and estimated size of the hot-spot. If 
the resulting grids are similar and differences in sample design relatively minor, then planners 
may feel more confident about the methodology applied to the site. 
 
 C-5.4.5  The hot-spot mathematical procedure may also be applied in reverse; if grid 
spacing and presumed hot-spot size and shape are known, the probability of having missed a hot-
spot (of some specified size) may be determined. Thus, site investigation managers may be able 
to convey to regulators the level of certainty that no problems were missed, within reasonable 
expectations. By applying the nomographs and solving for different variables, a researcher can 
answer such questions as the size of a hot-spot likely to be found by a given grid spacing, and the 
probability of not finding a hot-spot based on a given grid spacing. The following case study 
compares sampling strategies for a site with a hot-spot. 
 
C-6 Case Study 2—Comparing Random Sampling Strategies at a Site with a Hot-Spot.  
Table C-2 illustrates examples of the three random sampling approaches at a generic site and the 
differences in descriptive statistics that might influence a manager’s decisions related to the site. 
The three different sampling plans are applied to the same data set: Plan A is simple random 
sampling, Plan B is stratified random sampling, and Plan C is systematic and grid sampling. The 
site is represented by a 9-by-9 grid with the 3 right-most grid columns divided by a heavy solid 
line indicating a hot-spot, and the lower left 12 cells a secondary hot-spot (applicable to Plans B 
and C only). For Plans B and C the largest group of cells is Group 1; the lower left corner is 
Group 2; and the right three columns make up Group 3. The number in each cell represents a ge-
neric analytical result, had a sample been collected from every cell. A collected sample is repre-
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sented by a shaded cell. The systematic sampling (Plan C) was determined by using a set pattern 
beginning at a randomly selected first location. (This is not obvious from the pattern of shaded 
cells.) 
 
 C-6.1  For this example, assume that decisions will be based on a 2-stage comparison cri-
terion: values less than 5 units require no action; values greater than 5 units but less than 50 units 
require further remedial investigation but no immediate action; and values greater than 50 units 
indicate an immediately dangerous condition requiring an emergency removal action. 
 
 C-6.2  The three sampling plans are judged against a hypothetical sampling of every cell 
across the site. In this case, the following are determined: 
 
 C-6.2.1  Total number of samples, N = 81. 
 
 C-6.2.2  Summation of all results, S = 1708.1. 
 
 C-6.2.3  Total population average, μ = 21.09. 
 
 C-6.3  For Plans B and C, the following are determined for the entire populations of each 
group: 
 

Group 1: n1 = 42 S1 = 23.4 μ1 = 0.56 
Group 2: n2 = 12 S2 = 47.7 μ2 = 3.98 
Group 3: n3 = 27 S3 = 1,637 μ3 = 60.63 

 
 C-6.4  Note that population mean may be viewed as a weighted mean calculated from 
each group population mean: 
 
 i

i
ii

i
i wNn μμμ ∑∑ == )/(  

 
 w1 = 42/81, w2 = 12/81, w3 = 27/81 
 
 C-6.5  For Plans B and C, a total of nine samples are randomly selected. (For example, 
for the nine samples collected for Plan B, two are from Group 1, four are from Group 2, and 
three are from Group 3.) The mean of the population mean (i.e., entire set of 81 samples) is esti-
mated by calculating the sample mean of each group and weighting them:  
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i
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Table C-2 
Comparison of Random Sampling Method Results 
 

Plan A: Simple Random Sampling 

0.26 0.24 0.74 0.95 0.25 0.34 94.18 20.16 61.90  Plan A Si ix  x = ∑ wi ix  

0.97 0.54 0.13 0.18 0.17 0.48 5.40 13.39 19.79  
All nine 
samples 193.84 21.54 N/A 

0.97 0.30 0.72 0.09 0.48 0.79 55.28 55.10 94.98      
0.82 0.03 0.95 0.72 0.22 0.81 29.31 1.26 72.37      
0.52 0.66 0.48 0.83 0.92 0.43 78.73 84.02 77.05      
2.82 1.45 1.24 0.52 0.69 0.47 89.00 98.76 83.54      
3.14 8.24 8.48 0.55 0.11 0.85 76.71 96.91 84.19      
7.18 1.68 0.96 0.74 0.47 0.86 42.95 16.94 72.67      
5.84 3.73 2.98 0.65 0.99 0.51 96.66 52.85 62.86      

Plan B: Stratified Random Sampling      

0.26 0.24 0.74 0.95 0.25 0.34 94.18 20.16 61.90  Plan B Si ix  x = ∑ wi ix  

0.97 0.54 0.13 0.18 0.17 0.48 5.40 13.39 19.79  
All nine 
samples 210.22 23.36 N/A 

0.97 0.30 0.72 0.09 0.48 0.79 55.28 55.10 94.98      
0.82 0.03 0.95 0.72 0.22 0.81 29.31 1.26 72.37  Group 1 2.06 0.51  
0.52 0.66 0.48 0.83 0.92 0.43 78.73 84.02 77.05  Group 2 3.12 1.56  

2.82 1.45 1.24 0.52 0.69 0.47 89.00 98.76 83.54  Group 3 205.04 68.35  
3.14 8.24 8.48 0.55 0.11 0.85 76.71 96.91 84.19     23.28 
7.18 1.68 0.96 0.74 0.47 0.86 42.95 16.94 72.67      
5.84 3.73 2.98 0.65 0.99 0.51 96.66 52.85 62.86      

Plan C: Systematic and Grid Sampling      

0.26 0.24 0.74 0.95 0.25 0.34 94.18 20.16 61.90  Plan C Si ix  x = ∑ wi ix  

0.97 0.54 0.13 0.18 0.17 0.48 5.40 13.39 19.79  
All nine 
samples 244.75 27.19 N/A 

0.97 0.30 0.72 0.09 0.48 0.79 55.28 55.10 94.98      
0.82 0.03 0.95 0.72 0.22 0.81 29.31 1.26 72.37  Group 1 2.26 0.45  
0.52 0.66 0.48 0.83 0.92 0.43 78.73 84.02 77.05  Group 2 3.73 3.73  

2.82 1.45 1.24 0.52 0.69 0.47 89.00 98.76 83.54  Group 3 238.76 79.59  
3.14 8.24 8.48 0.55 0.11 0.85 76.71 96.91 84.19     27.31 
7.18 1.68 0.96 0.74 0.47 0.86 42.95 16.94 72.67      
5.84 3.73 2.98 0.65 0.99 0.51 96.66 52.85 62.86      
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SUMMARY 

Grouping 
Population 

Mean# 

Simple 

Ax  
Stratified  

Bx  

Systematic  

Cx # 

Group 1 0.56 — 0.52 0.45 
Group 2 3.98 — 1.56 3.73 
Group 3 60.63 — 68.35 79.59 
Entire Grid 21.09 21.54 23.28 27.31 

 
Notes: 
Shading indicates a sampled grid location 

 
 C-6.7  To assess each sampling plan, the mean concentrations determined from the lim-
ited sampling to those for the entire site data set are compared. Simple random sampling (Plan 
A) provides the best estimate of the overall population average. However, it is fairly limited in 
identifying the best course of action for the underlying strata in that it suggests that the entire 
population is subject to additional investigation or action. Another shortcoming is that none of 
the random sampling designs identified the “secondary hot-spots” in Group 2; that is, none of the 
samples selected in Group 2 (the shaded cells) exceed 5. Stratified sampling (Plan B) resulted in 
better data for decision-making because data were obtained for all three groups, although some 
of the group mean estimates are rather poor. In the systematic plan (Plan C), each stratum is rep-
resented in the statistics at a frequency roughly equal to its portion of the whole. (The ratio of the 
total number of cells for Groups 1, 2, and 3 is approximately 5:1:3, the ratio of the number of 
samples collected for each group.) Had the presence of underlying strata been unknown, the sys-
tematic plan would have given the best indication of potential problems at the site. 
 
C-7 Systematic Sampling Over Time.  Systematic sampling can also be applied when the 
parameter of interest is expected to vary over time. This one-dimensional scheme is sometimes 
called periodic sampling and is quite simple. Divide the span of time under examination into an 
arbitrary number of “blocks” (e.g., 20 intervals) and, having calculated an appropriate number of 
samples for the application, simply divide the number of samples required into the number of 
blocks available. This gives the time between samples. The starting time is chosen randomly. 
(Note that the same strategy may be used to establish the distance between grid lines, where the 
intervals would be measured in units of distance rather than time.) In general, the greater the 
variability in the parameter being measured is, the greater the number of samples required for the 
required degree of confidence. 
 
C-8 Ranked Set Sampling.  As stated in EPA QA/G5-S: “Ranked set sampling is an innova-
tive design that can be highly useful and cost-efficient in obtaining better estimates of mean con-
centration levels in environmental media.” The technique typically entails the use of two 
analytical methods, a “definitive” method (e.g., a fixed laboratory method) and a “screening” 
method (e.g., a field method). Usually, the cost of the screening method is significantly less than 
that of the definitive method, while the analytical quality of the definitive method exceeds that of 
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the screening method. Ranked set sampling is a two-phase sampling design. It first identifies sets 
of field locations and uses inexpensive measurements to rank locations within each set; next, it 
selects one location from each set for analysis by the definitive method. Only a brief overview of 
this sampling technique is presented in this Appendix. The reader is referred to the EPA QA/G5-
S guidance document for a more detailed discussion and illustration of rank set sampling.   
 
 C-8.1  For a “balanced design,” m sets of m samples (at total of m2 samples) are initially 
analyzed using professional judgment or some screening method.  The field samples in each set 
are then independently ranked (e.g., from highest to lowest). The first ranking sample (the high-
est sample) is selected from the first set, the second highest ranking sample is selected from the 
second set, and so forth, until m samples are selected for analyses using the definitive (i.e., more 
accurate and expensive) analytical method. The process is repeated r times, giving a total of m2 r 
field analyses and mr definitive analyses.  
 
 C-8.2  One of the best reasons for applying ranked set sampling is its ability to provide 
samples from across the distribution of values at the site. This, in turn, creates a better estimate 
of the population mean and improves the performance of various other statistical tests, especially 
those that entail distributional assumptions. A wide variety of field screening tools can be used to 
supplement the professional judgment of the samplers and, in certain circumstances, can even be 
used later as definitive data, assuming good correlation with fixed laboratory results is achieved. 
Paragraph C-9 illustrates a practical application of ranked set sampling. 
 
 C-8.3  Relative to simple random sampling, this design results in a more representative 
sample, and therefore leads to more precise estimates of the population parameters. A large 
number of screening analyses increases site coverage, and the ranking information from the 
screening analyses reduces the required number of definitive analyses relative to the number that 
would be required from a random sampling design. Therefore, the ranked set sampling approach 
has the added benefit of typically being less expensive than a simple random sampling approach. 
Because preliminary data are used to ensure representative samples are collected, the variability 
among the samples is better controlled and the number of samples required to make a probabilis-
tic decision with the same degree of confidence is reduced.  
 
 C-8.4  However, there are several limitations to ranked set sampling. The screening and 
definitive methods must be strongly correlated with one another. In addition, the cost of the de-
finitive analyses compared to the cost of the ranking procedure used for the field methods must 
be relatively large for the approach to be cost-effective. One should consider whether two phases 
of sampling is cost-effective relative to a more standard sampling method and whether it is tech-
nically feasible given project resource constraints. Finally, the statistical computations to be per-
formed on the resulting data set are more complex relative to those used for a simple random 
sampling design. 
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C-9 Case Study 3—Ranked Set Sampling.  The project team used field screening test kits 
on a grid established over a wide area to characterize an ordnance demolition area. Using the in-
formation from the field screening, the team was able to stratify the site into three areas: i) a re-
gion requiring no remediation; ii) an area clearly requiring remediation and for which samples at 
depth were required to provide volume estimates; and iii) an area requiring additional study with 
definitive methods to establish the need for remediation or no further action. Definitive samples 
were then collected to distinguish the various explosives and their daughter products that the test 
kit could not resolve. These results were then used to better estimate the average concentration of 
individual explosives within the various strata, and to serve as confirmation samples for the test 
kits. The definitive samples helped correlate low-, mid-, and high-range concentrations in each 
area. Thus, the screening data were used to select locations for definitive samples to ensure more 
representative mean concentrations within each area. 
 
C-10 Composite Sampling.  Composite sampling is the physical averaging of environmental 
samples in a manner that yields an accurate and representative estimate of environmental condi-
tions, usually at a reduced cost. It involves physically combining and homogenizing two or more 
environmental samples (referred to as “grab” samples, and called “subsamples” in this context) 
to form a new sample referred to as a composite sample. Compositing is used when the mean is 
primarily of interest (i.e., because the process is a physical averaging) and information on the 
spatial or temporal variability of contamination is not needed (i.e., because this information is 
lost unless the subsamples can be reanalyzed). Tables C-3 and C-4 suggest circumstances under 
which compositing can be useful. Various sampling designs may be used to select subsamples to 
be mixed together into composites.  
 
Table C-3 
Objectives of Composite Sampling—Fundamental Cases 

a. Estimating a population (or stratum) mean for a continuous variable (e.g., 
analyte concentration)* 

1. Objectives that rely on com-
posite sampling 

b.  Estimating proportion of population exhibiting some trait 

a.  Classifying sampling units as having or not having some trait such as be-
ing in a hot-spot or from a contaminated cell 

2. Objectives that rely on com-
posite sampling and retesting 
protocols b.  Identifying the sampling unit with highest value of some continuous 

measure (e.g., concentration), or identifying sampling units in the upper 
percentiles 

 
* In general, information on variability and spatial or temporal patterns is lost when compositing is used for this 

objective; however, in some cases, some information on patterns can be acquired. 
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Table C-4 
Criteria for Judging Benefits of Composite Sampling 

Criterion or Objective Composite sampling is likely to be beneficial if… 
1. Analytical costs Analytical costs are high relative to sample acquisition/handling costs. 
2. Analytical variability Analytical variability is small relative to variability of the target population. 
3. Analytical sensitivity Concentrations of relevance are much larger than detection and quantitation 

limits. 
4. Representativeness Compositing does not affect sample integrity (expect no chemical reac-

tions/interferences or analyte losses from volatility) or result in safety hazards. 
Individual samples can be adequately homogenized. 

5. Objective is to estimate 
population mean (See 1a in Ta-
ble 2-3) 

Information on individual samples is not important. Information on associa-
tions is not important. Criteria 1, 2, and 4 are met. 

6. Objective is to estimate pro-
portion of population with a 
trait (See 1b in Table 2-3) 

Composite has trait if individual sample does. Likelihood of misclassification 
is small. Trait is rare. Criteria 1, 2, 3, and 4 are met. 

7. Objective is to classify sam-
ples as having/not having a trait 
(See 2a in Table 2-3) 

Composite has trait if individual samples do. Likelihood of misclassification is 
small. Retesting of aliquots (grab samples) for each composite sample is possi-
ble. Trait is rare. Criteria 1, 2, 3, and 4 are met. 

8. Objective is to identify the 
sample(s) with the highest 
value (See 2b in Table 2-3) 

Measurement error is negligible. Retesting of aliquots from individual samples 
is possible. Criteria 1, 2, 3, and 4 are met. 

 
C-11 Compositing Fluids.  A typical application of compositing fluids is in creating a repre-
sentative sample when one or another condition, tied to contaminant mass or concentration, var-
ies over space or time. National Pollutant Discharge Elimination System (NPDES) monitoring 
provides a classic case in point. 
 
 C-11.1  The fundamental objective for this type of compositing is to develop a single 
sample that accurately represents the whole area or time under consideration. The alternative en-
tails greatly increased sampling and analysis costs and agreement on an acceptable mathematical 
approach to combining the individual sample results. Table C-5 examines a variety of composit-
ing approaches linked to particular circumstances. Paragraph C-12 illustrates an example of 
flow-proportioned compositing. 
 
 C-11.2  Another classic use of compositing fluids is in sampling stack emissions. When a 
fluid (or gas in the case of stack emissions) flows through a pipe, the fluid does not move at a 
uniform speed across the diameter of the pipe. Friction with the interior surface of the pipe 
causes fluids near the casing to move more slowly than at the center. Thus, when measuring 
mass per unit volume per unit of time, isokinetic sampling is applied. In this case, subsamples are 
collected across the diameter of the pipe for identical time intervals, along with a measure of the 
flow rate at the individual locations. Using this information, the engineer can balance concentra-
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tion against the flow rate to yield an accurate estimate of the average mass discharged from the 
stack (or pipe) over time. 
 
Table C-5 
Compositing Methods 

 
Method 

No. 

 
Sampling 

Mode 

 
Compositing Principle 

 
Comments 

 
Disadvantages 

1. Continuous Constant sample pumping 
rate 

Practicable but not 
widely used 

Yields large sample volume; 
may lack representativeness 
for highly variable flows 

2. Continuous Sample pumping rate 
proportional to stream 
flow 

Not widely used Yields large sample volume 
but requires accurate flow 
measurement equipment 

3. Periodic Constant sample volume, 
constant time interval be-
tween samples 

Widely used in auto-
matic samplers and 
widely used as man-
ual method 

Not most representative 
method for highly variable 
flow or concentration condi-
tions 

4. Periodic Constant sample volume, 
time interval between 
samples proportional to 
stream flow 

Widely used in auto-
matic sampling but 
rarely used in manual 
sampling 

Manual compositing from 
flow chart 

5. Periodic Constant time interval be-
tween samples; sample 
volume proportional to 
total stream flow since 
last sample 

Not widely used in 
automatic samplers 
but may be done 
manually 

Manual compositing from 
flow chart 

6. Periodic Constant time interval be-
tween samples; sample 
volume proportional to 
stream flow at time of 
sampling 

Used in automatic 
samplers and widely 
used as manual 
method 

Manual compositing from 
flow chart 

After: EPA 600/4-82-029 

 
C-12 Case Study 4—Flow-Proportioned Compositing.  At a manufacturing facility in Ohio, 
an existing NPDES permit called for the facility to collect a single, three-part, equal-weight 
composite sample monthly. The facility operated three shifts. Production on all three shifts was 
essentially the same, although the bulk of maintenance activities took place on the second shift. 
Three grab samples, one from each shift, were composited at the laboratory prior to analysis.  
 
 C-12.1  A change in business climate led to a reduction in demand such that the midnight 
to 8 a.m. shift was canceled and the 4 p.m. to midnight shift was reduced by roughly two-thirds. 
The facility manager asked that the overall effect the change in shifts would have on discharge 
rates be assessed in preparation for permit renewal negotiations. For this case study, only the ni-
trate data are considered. The following analysis was performed: 
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Original flow–shift 1 200,000 gal/day* New flow 200,000 gal/day 
Original flow–shift 2 200,000 gal/day New flow 70,000 gal/day 
Original flow–shift 3 200,000 gal/day New flow 5,000 gal/day 

 
 C-12.2  Historical composite results for the previous year were as follows: 
 
 Jan 0.48  Average 0.38 mg/L† 
 Feb 0.12  Variance 0.20 mg/L 
 Mar 0.26 
 Apr 0.34  Current Permit Limit  2.5 lb/day‡ 
 May 0.48  EPA Proposed New Limit 1.0 lb/day 
 Jun 0.31 
 Jul 0.47 
 Aug 0.46 
 Sep 0.13  Assuming average concentration does not change 
 Oct 0.40 
 Nov 0.16  Under Equal Volume sampling, lb/day = 1.9 
 Dec 0.20  Under Flow Proportioned sampling, lb/day = 0.87 
 
 C-12.3  Thus, the new permit limit will be acceptable if the permit also incorporates a 
change in the compositing method. 
 
C-13 Compositing Solids.  Generally speaking, solids and, in particular, soils are composited 
to estimate the concentration of a contaminant over large areas, or when the granular or globular 
nature of the contaminant of concern (e.g., explosives, PCB oils) can provide false estimates of 
concentration from individual measurements because of excessive heterogeneity in the individual 
samples. Other applications are also possible. Compositing can also be used to assess the propor-
tion of samples that meet a specific condition and, with retesting of a small subset of original lo-
cations, can also be used to locate rare events (like hot-spots) where too many individual samples 
would be required. For example, at a site with very few historical data, 12 composite samples of 
4 subsamples each may be analyzed for a long list of possible contaminants. If only one sample 
contains only a few contaminants of concern, then further investigation is limited to those con-
taminants and in only four small areas. Exhaustive testing of the 48 original discrete samples was 
not necessary, and further study of most of the site is precluded. As extensive mixing of the sub-
samples is required to form a representative composite, composite sampling is not generally ap-
plied to samples when volatile organic compounds (VOCs) are of particular interest.  
 

                                                 
* gal/day = gallons per day 
† mg/L = milligrams per liter 
‡ lb/day = pounds per day 
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C-14 Adaptive Sampling.  Adaptive sampling designs are typically used to characterize the 
extent of contamination using multiple sampling events; they rely upon cost-effective field meth-
odologies with rapid turn-around time. The results of an initial sampling event are used to mod-
ify the selection of future sampling locations for the study area. Adaptive cluster sampling is 
useful when the characteristic of interest is sparely distributed through the site. Adaptive cluster 
sampling could be used for a study area that contains mostly low-level or negligible contamina-
tion but also isolated pockets of high-level contamination (i.e., hot-spots). This is illustrated in 
Figure C-2. As stated previously, under these circumstances, a random sampling design would 
not be the optimum approach (as the hot-spots could remain undetected). 
 
 C-14.1  Three major elements characterize adaptive cluster sampling. First, a set of sam-
pling locations is initially determined. Though there may be insufficient data to support firm 
conclusions overall, information may exist that suggests particular areas of the site are clean or 
contaminated. The result is an initial conceptual model for the site. For example, a grid is placed 
over the geographical area of interest, where each cell of the grid represents a potential sampling 
unit (location). A subset of all the potential sampling units is selected for sampling. Figure C-2 
illustrates the use of random sampling for the selection of the initial sampling event. Second, a 
decision rule for each sampling unit must be established. If the contaminant of interest exceeds 
the decision limit, additional sampling is required “near” the sampling unit (i.e., adjacent sam-
pling units are sampled). Third, the “neighborhood” of each sampling point (i.e., the area re-
quired for additional sampling) must be defined. Several additional stages of sampling are 
designated on Figure C-2. The symbol “X” denotes the neighboring sampling units that were 
sampled. (Note: In the example illustrated in Figure C-2, one area of contamination was missed.) 
The decision rule and additional sampling are repeatedly applied until contamination is not de-
tected above the decision limit for each sampling unit. This results in a “mapping” of contami-
nants as illustrated in the final stage in Figure C-2, where the extent of “hot-spots” is delineated 
using a large number of sample units. The shaded areas in Figure C-2 represent “hot-spots” (i.e., 
area in which contamination exceeds the decision limit).  
 
 C-14.2  Adaptive sampling and analysis plans (SAPs) provide a cost-effective alternative 
to traditional sampling designs. Adaptive SAPs are based on field analytical methods allowing 
for rapid sample turnaround and field-based decision support to guide the sampling program. 
One objective of adaptive SAPs is to support removal actions. 
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Figure C-2. Population grid with initial and follow-up samples and areas of in-
terest. From EPA QA/G-5S. 
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 C-14.3  Traditional approaches to designing and executing a removal action have relied 
on “digging to the design line” and then taking confirmation samples. The static work plans that 
have accompanied these efforts have specified the number and location of samples. Often, how-
ever, the design lines have been at best rough approximations of the real extent of contamination, 
resulting in either extensive under- or over-removal of soils. In both cases, the economic impacts 
have been significant. An important factor in establishing the design line is the site cleanup lev-
els. Cleanups should be implemented so that concentrations left at the site meet the cleanup goal 
to a predetermined level of certainty, with the level of certainty agreed upon by the design team 
and regulators. 
 
 C-14.4  Adaptive SAPs rely on field analytical methods to generate sample results 
quickly enough to have impact on the course of the sampling program. They are based on dy-
namic work plans that specify the logic of how sampling numbers, locations, and analyses will 
be determined as the program proceeds. They also rely on rapid, field-level decision-making. 
Adaptive SAPs require: i) field analytical methods that are appropriate for the types of contami-
nants expected at a site; and ii) a means for supporting decision-making in the field that is appro-
priate for the goals of the program. 
 
 C-14.5  Rapid field decision-making requires qualitative and quantitative decision sup-
port. Qualitative decision support means having technical staff equipped with an accurate under-
standing of the sampling progress. Large adaptive SAPs can produce hundreds of samples per 
day. Managing, integrating, and displaying the sample information pose a serious logistical chal-
lenge that can interfere with program process if not adequately addressed. A typical adaptive 
SAP includes some type of field- or web-based database system along with a Geographic Infor-
mation System for data display to help with logistics and visualization. 
 
 C-14.6  Quantitative decision support for adaptive SAPs that delineate removal areas re-
quires the ability to estimate contaminant extent based on sampling results, determine the uncer-
tainty associated with those results, predict expected values from previous sampling, and identify 
new removal locations based on that information.  
 
 C-14.7  The adaptive sampling scheme presented in Figure C-2 may be applied to con-
tamination removal actions as well. In such an application, each sample is used to determine 
whether soil removal (i.e., excavation) is necessary, and the areal (and volumetric) extent of soil 
needing removal can be established via such sampling techniques. 
 
 C-14.8  The adaptive SAP design and implementation process for guiding removal ac-
tions follows these steps. 
 
 C-14.8.1  Sampling location decision points forming a regular grid are laid across the 
site. Each sample decision point is so named because at each sampling location, the following 



EM 1110-1-4014 
15 Jan 07 

 

C-19 

decision must be made: will this point be removed or left in place? For instance, if the petroleum 
hydrocarbon concentration at this location exceeds an action level, it will be excavated from the 
site. An action level serves as the criterion for differentiating among decision points that can be 
considered clean and points that must be treated as contaminated. Because the acceptable level of 
uncertainty is very important to the design of the adaptive SAP, it must be determined prior to 
sampling or before the program begins (i.e., during the data quality objective development proc-
ess), with mutual agreement from all the stakeholders involved with the site. 
 
 C-14.8.2  Based on professional judgment and historical information available for the 
site, a probability is initially assigned to each decision point; namely, the likelihood contamina-
tion at that location is greater than some action level. 
 
 C-14.8.3  As sample results become available, the probabilities for each of the decision 
points are updated with actual data. The site is then divided into three regions: i) the portion of 
the site (decision points) where the probability that contamination exceeds the action level is low 
(this region is accepted as clean with perhaps only minimal confirmatory sampling); ii) the por-
tion of the site where the probability of contamination is so high that confirmatory sampling is 
unnecessary; and iii) the portion of the site where there is neither a high nor low probability of 
contamination above the action level, i.e., the gray area where there is significant uncertainty 
whether the presence or absence of contamination is greater than the pre-determined action level. 
Indicator kriging (Appendix Q) may be a powerful tool for such an application. 
 
 C-14.8.4  Predetermined decision rules are applied. There may be several alternative de-
cision rules that can be used to drive the sampling process. Additional sampling may need to be 
done for the gray areas, especially if the removal action is desired to lower overall site risk. The 
decision rules should tend to produce a sampling program that works its way around suspected 
areas of contamination. The decision rules should also tend to produce a sampling pattern that 
starts from areas of suspected contamination and works its way outward to the boundary where 
removal can cease. 
 
 C-14.9  Regardless of the decision rule used, the process is the same. Sampling locations 
are selected that have the greatest opportunity to provide the most benefit in the context of the 
selected decision rule. After results are obtained, the extent of contamination is re-estimated 
along with the number of uncertain decision points remaining, and a decision is made where ad-
ditional removal is justified until no such locations remain. 
 
 C-14.10  Figure C-3 shows the adaptive sampling plan process, and Paragraph C-15 illus-
trates a practical application of an adaptive SAP. 
 
C-15 Case Study 5—Argonne’s Adaptive Sampling and Analysis Program.  The U.S. De-
partment of Energy’s (DOE’s) Argonne National Laboratory developed the following case study. 
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 C-15.1  Oil and gas producers may save millions of dollars in cleaning up soils contami-
nated with naturally occurring radioactive materials by applying an on-site soil sampling and 
analysis method developed by the U.S. DOE’s Argonne National Laboratory. 
 
 C-15.2  Naturally occurring radioactive material accumulates when the production of oil 
and natural gas from underground reservoirs transports small quantities of radium to the surface. 
Over time, the radium—usually radium-226 and, to a lesser extent, radium-228—can concentrate 
in pipe scale and sludge deposits, which in turn can contaminate soil and equipment. 
 

 

COLLECT COMPOSITE SOIL SAMPLE
FROM BUFFER GRIDS

FIELD SCREEN
SOIL SAMPLE

DO FIELD SCREENING
RESULTS EXCEED
CLEANUP LEVELS?

GRID IS HOT
EXPAND BUFFER AREA BY

2 GRIDS IN ALL DIRECTIONS
FROM SUBJECT GRID

SELECT AND ANALYZE A 
VERIFICATION SAMPLE
FROM 10 PERCENT OF

FIELD SCREENED SAMPLES

YESMORE BUFFER GRIDS
TO SAMPLE?

NO

YES

SAMPLING COMPLETE

NO

 
 

Figure C-3. Adaptive sampling plan flow chart. 
 
 C-15.3  The traditional approach to cleaning up such sites involves complicated soil sam-
pling techniques and shipping these samples to off-site laboratories for analysis—a time-
consuming and costly process. But a recent demonstration has shown that Argonne’s adaptive 
SAP can dramatically reduce the time and money needed to characterize and remediate sites con-
taminated with naturally occurring radioactive materials. Adaptive SAP combines real time data 
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collection techniques with in-field decision-making for faster and more precise characterization 
of a site. It was first used successfully for faster and cheaper cleanup of radioactive contamina-
tion at DOE sites. 
 
 C-15.4  The demonstration was conducted on a 3.5-acre site at Lease Management, Inc., 
in Mt. Pleasant, Michigan. Pipe salvaged from nearby oil and gas production sites was stacked 
there prior to being cleaned and reconditioned. Contaminated scale on the outside of the pipes 
had fallen off during handling and from exposure to the elements. As a result, soils across the 
pipe yard had varying levels of radium-226 concentrations. 
 
 C-15.5  First, scientists walked over the site with a portable global positioning system and 
a hand-held gamma ray detection device to map surface gross activity levels. The scientists then 
used a commercial technology called the RadInSoilTM meter to develop a relationship between 
gross activity values and radium-226 activity concentrations. State guidelines are based on these 
activity concentrations. With the field data, researchers then used unique Argonne-developed 
techniques to determine where soil concentrations of contaminants exceeded regulatory stan-
dards and would need to be excavated for disposal. To confirm the presence of radium-226, sci-
entists used a tripod-mounted, camera-like device called a High Purity Germanium gamma 
spectroscopy system that directly measures radium-226 concentrations in surface soils. With use 
of the results from adaptive SAP, decisions on excavating contaminated soil for disposal can be 
made immediately. It took 4 days to characterize and remediate the Michigan site. 
 
 C-15.6  The average cost for soil disposal ranges from about $100 to $200 per cubic yard, 
so keeping soil volumes to an absolute minimum is very important. The goal is to be as precise 
as possible in digging up dirt for disposal so one doesn’t take anything clean away or leave any-
thing above cleanup standards behind. 
 
 C-15.7  For sites contaminated with naturally occurring radioactive materials, it is esti-
mated that using adaptive SAP for site characterization costs only 10% of a more traditional ap-
proach. In the Michigan demonstration, the use of adaptive SAP is expected to save the site 
owner at least $36,000 in disposal costs.  
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APPENDIX D 
Descriptive Statistics 

 
D-1 Introduction.  For most environmental sampling, the collected data for some measure-
ment variable of interest constitute a small subset of its set of possible values. The data subset 
frequently consists of contaminant concentrations from the analysis of environmental (e.g., soil 
and groundwater) samples collected from the study area. In a statistical context, this subset is re-
ferred to as a sample. If it were possible to collect environmental observations from every por-
tion of the study area (i.e., to exhaustively sample an entire site), the set of resulting values 
would constitute the population. As this is typically not possible, statistics calculated from the 
sample are used to describe or make inferences about the underlying population. For the envi-
ronmental applications discussed herein, the statistical methods presented are implicitly for a 
sample, not the entire population. For more information on populations, the reader is referred to 
introductory statistical texts readily available in libraries and online. 
 
 D-1.1  Commonly used descriptive statistics for environmental data include measures of 
central tendency, such as mean, median, or mode; measures of relative standing, such as percen-
tiles; measures of dispersion, such as range, variance, standard deviation, coefficient of variation, 
or interquartile range; measures of distribution symmetry or shape; and measures of association 
between two or more variables, such as correlation. These measures can also be used to test hy-
potheses regarding the populations from which the data were drawn. 
 
 D-1.2  In general, the sampling design influences how descriptive statistical quantities are 
calculated. The formulas presented in this monograph are for simple random sampling, simple 
random sampling with composite samples, and randomized systematic sampling. If more com-
plex designs are used, such as a stratified design, then the formulas need to be adjusted. All of 
these designs are addressed in Appendix C. 
 
 D-1.3  In addition, the distribution of a data set may also influence how descriptive statis-
tical quantities are calculated. Most of the discussion in this Appendix will be centered on nor-
mal populations. However, as detailed in Appendix F, it is not uncommon for environmental data 
to follow other distributions. The most commonly encountered alternative is the lognormal dis-
tribution. This Appendix will also present how to calculate the mean and quantiles of the popula-
tion for a lognormally distributed data set. To estimate other parameters, the reader is urged to 
refer to any of the excellent texts available, including those referenced here. 
 
 D-1.4  The terminology used in presenting general formulas and calculations for this ex-
ercise are standard. Out of a total population N, let x1, x2, ... , xn represent the n data points, a 
sample set of n measurements. Additional information on calculating descriptive statistics for 
environmental applications can be found in the EPA/600/R-96/084, QA/G-9 and Gilbert (1987). 
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D-2 Measures of Central Tendency.  Measures of central tendency characterize the center of 
a set of measured data values. The three most common estimates are the mean, median, and 
mode. These are described below, and examples of calculating each of them are presented in 
Paragraph D-2.2 
 
 D-2.1  Mean.  The mean is the most commonly used measure of central tendency. The 
formula used to calculate the sample mean is a function of the sampling design. The sample 
mean x  (arithmetic average) is the sum of the data points, nxxx ,,, 21 K , divided by the total 
number of data points (n): 
 

n

x
x

n

i
i∑

== 1  (D-1) 

 
where ix  denotes the value of the ith point.  
 
 D-2.1.1  If distribution testing suggests that data are lognormally distributed, then the de-
scriptive statistics are best calculated using the transformed data (for each value ( )ii xLny = ). 
Calculating the sample mean, x , is possible, even for lognormally distributed data. Gilbert 
(1987) reports that x  may be used when the population coefficient of variation is small (i.e., less 
than 1.2). Unfortunately, the sample mean is statistically biased for known lognormal conditions. 
It is highly sensitive to a few large data values, as is typical of lognormal data. There are alterna-
tives for estimating the population mean that are not statistically biased, and these are preferred. 
 
 D-2.1.2  The preferred method for estimating the population mean of a lognormal popula-
tion is calculated by:  
 
 ( )te n

yΨ=1μ̂  (D-2) 
 
where  
 
 y  = sample mean of the log-transformed data  
  n = number of data points 
  sy = sample standard deviation of the log-transformed data  
 Ψn(t) (with t = sy

2/2) = the following infinite series 
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 D-2.1.3  This is the minimum variance unbiased estimate of the population mean. Like-
wise, the unbiased estimator of the variance of the mean is: 
 
 ( )[ ]{ [ ]}ttys nn ′Ψ−Ψ= 2

1
2 )2exp()ˆ(μ  (D-3) 

 
where 
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 D-2.1.4  The infinite series may be evaluated on a computer or estimated from tables ref-
erenced in Gilbert (1987). This method produces the minimum unbiased variance estimator (sta-
tistically unbiased and smallest sampling error variance) of the mean for a lognormal population. 
 
 D-2.1.5  Performing this calculation obviously can be laborious. There is a simpler 
method for estimating the mean and variance of a lognormal population that arises in Gilbert and 
in EPA guidance documentation. This method uses the formulas: 
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( )[ ]1expˆˆ 222 −= ysμσ  (D-4) 

 
 D-2.1.6  However, the approach can produce poor (biased high) estimates of mean and 
variance for small data sets and is not recommended unless n is large (e.g., n > 50). Paragraph D-
2.2 presents an example calculation for the mean of a lognormal population using the three meth-
ods. 
 
 D-2.1.7  For complex sampling designs, such as stratification, the sample mean is a 
weighted arithmetic average of the sample means of the L strata. Because a stratified sampling 
plan weights the number of samples unequally among areas, the weights for each area are incor-
porated into the calculation of the average. A weighted average is very similar to the arithmetic 
average, where an arithmetic average weights each sample result equally (with a weight of 1/n). 
A weighted arithmetic average is calculated by: 
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where: 
 
 iw  = weight for the ith stratum  
 ix  = sample mean of the ith stratum 
  L = number of strata  

 1
1

=∑
=

L

i
iw  

 
 D-2.1.8  For example, consider a stratified sampling plan that collects a total of n = 20 
samples from a site with L = 2 sub-groups, where 8 samples, x1i i = 1,…8, are collected in sub-
group 1, and 12 samples, x2i i = 1,…12, are collected in subgroup 2. If the average for the site is 
required and the two strata are assumed to be of equal area or volume, then the weights for the 
weighted average are ½ for the sample mean from subgroup 1 and ½ for the sample mean from 
subgroup 2 so that  
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and the overall mean is  
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 D-2.1.9  Careful examination will show that each observation in subgroup 1 is weighted 
by 1/16 in the overall mean and each observation in subgroup 2 is weighted by 1/24 in the over-
all mean. 
 
 D-2.1.10  The mean is the “center of gravity.” The mean is very sensitive to extreme val-
ues because each measurement, xi, is used to calculate the mean. Note that the sample mean, x , 
is distinguished from the corresponding population parameter, the population mean, μ. The 
population mean could hypothetically be calculated using Equation D-1 if it were possible to ex-
haustively sample the entire population. The number of all possible data points from the popula-
tion, N, would appear in the denominator of Equation D-1. Typically, the number of data points 
in the sample data set, Nn <<  and the sample mean, x , is a “best” estimate of μ. As previously 
stated, this section of the document focuses on sample statistics that are ultimately used to esti-
mate the corresponding parameters. 
 
 D-2.2  Example of Lognormal Mean Calculations.  A group of arsenic measurements in 
soil were found to be lognormally distributed. The sample analytical results (in mg/kg) are: 



EM 1110-1-4014 
15 Jan 07 

 

D-5 

 
SB1 SB2 SB3 SB4 SB5 SB6 SB7 SB8 SB9 SB10 

12.461 13.451 13.056 11.502 10.835 30.06 17.72 17.11 12.02 13.73 
 
 D-2.2.1  Method 1.  Using the simple (albeit biased) population average method, the sam-
ple mean of these data is: 
 

n

x
x

n

i
i∑

== 1 = 15.19 mg/kg arsenic in soil.  

 
The sample variance s2 = 32.3. Shapiro-Wilk testing (Appendix F) suggests that the lognormal 
distribution cannot be rejected. Also, the sample variance is high. These data would be better 
treated as lognormal. 
 
 D-2.2.2  Method 2.  To calculate the minimum unbiased variance estimator of the mean, 
we first take the natural logarithm of the data set and calculate the following: 
 

674.2=y ,   09060.02 =ys ,   0453.0
2

2

== ys
t . 

 
Using the minimum unbiased variance estimator, we see that the mean is 15.17 mg/kg. Method 1 
above, which does not account for the lognormality, is biased high slightly. 
 
 D-2.2.3  Method 3.  Others may choose to use the simpler Gilbert/EPA estimating 
method described above. This alternative also yields a sample mean of about 15.17 mg/kg. This 
result is low relative to the simple averaging method, but in this case is nearly identical to the 
minimum unbiased variance estimator. This is largely attributable to the low value of t in this ex-
ample.  
 
 D-2.2.4  Summary.  Ideally, with a computer, the method for minimum unbiased variance 
estimator of the mean for a lognormal population could be used. In cases of large n, it is suitable 
to use the third, and relatively simpler, method. 
 
 D-2.3  Median.  The sample median ( x~ ) is the second most common measure of central 
tendency. When measurements are ranked from lowest to highest, the median is the middle of 
the data set. Half of the data are less than the sample median, and half of the data are greater than 
the sample median.  
 
 D-2.3.1  To compute the sample median, list the data from smallest to largest and label 
these points: 
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So that )1(x  is the smallest, )2(x  is the second smallest, and so on, where )(nx  is the largest. 

 
 D-2.3.2  The determination of the sample median depends upon whether the sample size 
n is odd or even: 
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 D-2.3.3  The median is also referred to as the 50th

 percentile, the value greater than or 
equal to 50 percent of the measurements. Unlike the mean, the median is not influenced by ex-
treme values. The median is also more robust than the mean for censored data (when non-
detected results occur). When data are symmetrical, the mean and median of the data are very 
similar. If data are slightly skewed to higher values, the mean tends to be larger then the median 
because the mean is more influenced by these higher values than the median. Likewise, when 
data are skewed to lower values, the mean tends to be lower than the median. 
 
 D-2.4  Mode.  The third method of measuring the center of the data is the mode. The 
mode is the value of the sample that occurs with the greatest frequency. To find the mode, count 
the number of times each value occurs. As this value may not always exist, or if it does, it may 
not be unique, mode is the least commonly used measure of central tendency; however, it is use-
ful for qualitative data. 
 
 D-2.5  Examples for Calculating the Measures of Central Tendency.  Consider estimating 
the measures of central tendency for the subsurface soil background chromium results (in mg/kg) 
as follows: 4.60, 5.29, 4.26, 5.28, 4.53, 5.74, 5.86, and 3.84. 
 
 D-2.5.1  Sample Mean.  The sample mean (in mg/kg) is:  
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(Note that the mean is reported as three significant figures to reflect the minimum number of sig-
nificant figures in the original data set.) 
 
 D-2.5.2  Sample Median.  The data, from smallest to largest, are: 
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5.86 5.74, 5.29, 5.28, 4.60, , 4.53 4.26, , 3.84 ,,, )()2()1( =nxxx K .  

 
As there are eight points (n is even), the median (in mg/kg) is: 
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 D-2.5.3  Sample Mode.  In this example, mode does not exist since no value is repeated 
multiple times. 
 
D-3 Measures of Relative Standing.  Sometimes the analyst is interested in knowing the 
relative position of one of several observations in relation to all of the observations. Percentiles 
or quantiles are one such measure of relative standing that may also be useful for summarizing 
data.  
 

• The percentile is the data value that is greater than or equal to a given percentage of the 
data values.  

 
• The quantile is an alternative name for percentile when speaking in fractions (propor-

tions) rather than in percents. 
 
 D-3.1  Just as the mean is a measure of location at the center of data, percentiles and 
quantiles are measures of location at various positions of the data. For a continuous variable X, 
the p100th percentile or p quantile, xp, is the data point that is greater than or equal to 100p% of 
the data points and is less than or equal to (1 – p)100% of the data points. For example, if x is the 
95% percentile (0.95 quantile), then it has the property that 95% (a proportion 0.95 ) of the ob-
servations lie at or below xp and 5% (a proportion 0.05) of the data points lie at or above xp. 
 
 D-3.2  The percentile and quantile for a discrete variable (i.e., a variable that may assume 
only a finite number of values) is defined somewhat differently than for a continuous variable. 
For a discrete variable X, Xp is the p quantile of X if  
 

P(X < Xp) ≤ p  
 
and  
 

P(X > Xp ) ≤ 1 – p 
 
or equivalently,  
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 P(X ≤ Xp) ≥ p. 
 
 D-3.3  To calculate percentiles or quantiles for a set of n sample points (x1, x2, ..., xn), first 
list the data points from smallest to largest (x1, x2, ..., xn). Multiply the sample size, n, by p. Di-
vide the result into the integer part and the fractional part, i.e., let np = j + g where j is the integer 
part and g is the fraction part. The thp100  percentile, xp, is calculated by:  
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 D-3.4  One example of a percentile is the median. The median is the 50th percentile be-
cause half the results fall below this value and half of the results fall above this value. A sample 
percentile may fall between a pair of observations. For example, the 75th percentile of a data set 
of 10 observations is not uniquely defined.  
 
 D-3.5  Important percentiles usually reviewed are the quartiles of the data. The most 
common quartiles are 25th, 50th, and 75th percentiles. The 25th and 75th percentiles can be used to 
estimate the dispersion of a data set (see Paragraph D-4). Quartiles are discussed further in Para-
graph D-4 to explain the dispersion of the data. 
 
 D-3.6  Also important for environmental data are the 90th, 95th, and 99th percentiles, 
where a decision-maker would like to be sure that 90, 95, or 99% of the contamination levels are 
below a fixed risk level. Directions and examples for calculating the measures of relative stand-
ing are presented below in Paragraph D-4. 
 
 D-3.7  Estimating quantiles in lognormal populations arises frequently in environmental 
applications. Of course, a probability plot may be used to estimate the quantiles, after the data 
are transformed and plotted. Alternatively, a mathematical method is recommended in Gilbert 
(1987). Simply, 
 

( )ypp sZyx += expˆ  (D-6) 
 
where pZ  is the value of the cumulative normal distribution for the pth quantile. For the data in 
the preceding example (Paragraph D-2.2), the 99th quantile of the data is 
 

( ) 1.29301.0326.267.2expˆ 95.0 =×+=x  mg/kg. 
 

D-4 Calculating the Measures of Relative Standing (Percentiles).  The 95th, 75th, and 25th 
percentiles will be computed for the eight subsurface soil background chromium results (in 



EM 1110-1-4014 
15 Jan 07 

 

D-9 

mg/kg), ordered from lowest to highest, as follows: 3.84, 4.26, 4.53, 4.60, 5.28, 5.29, 5.74, and 
5.86. 
 
 D-4.1  For the 95th percentile, 95.0=p  and 
 
 6.7)95.0)(8( ==np  
 
Therefore: 
 
 gjnp +=  
 
 6.076.7 +=  
 
So: j = 7 and g = 0.6. 
 
 D-4.2  Since g ≠ 0, x(p) = x(j+1). The 95th percentile of this data set is: 
 
 86.5)8()17(95.0 === + xxx  mg/kg 
 
Note that 100% of the data points (8 out of 8 values) rather than 95% of the measurements are 
less than or equal to the 95th percentile. The 95th percentile is being calculated for the set of eight 
measured chromium values and not for the set of all possible values of chromium. The set of 
measured chromium concentrations is a discrete variable (there are only eight possible values for 
chromium). If a larger number of measurements were made, nearly (or precisely) 95% of the 
measurements would be less than or equal to the 95th percentile.  
 
 D-4.3  For the 75th percentile, 75.0=p  and  
 
 6)75.0)(8( ==np . 
 
Therefore: 
 
 gjnp +=  
 
 0.066 +=  
 
So: j = 6 and g = 0. 
 
 D-4.4 The 75th percentile of these data is: 
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x mg/kg.  

 
Note that 6 out of the 8 measured values (0.75 of the total number of observations) are less than 
or equal to the 75th percentile 5.52 mg/kg. 
 
 D-4.5  For the 25th percentile, 25.0=p  and 
 

2)25.0)(8( ==np   
 
Therefore: 
 

gjnp +=  
 

0.022 +=  
 
So: j = 2 and g = 0.  
 
 D-4.6  The 25th percentile of these data is: 
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D-5 Measures of Dispersion. 
 
 D-5.1  Introduction.  Measures of central tendency are more meaningful if accompanied 
by information on how the data spread out from the center. Measures of dispersion or variability 
in a data set include the sample range, variance, standard deviation, coefficient of variation, and 
the interquartile range. Directions for calculating these measures of dispersion follow, and exam-
ples are presented in Paragraph D-6. 
 
 D-5.1.1  Range.  This is the difference between the largest and smallest result from the 
data set. 
 
 D-5.1.2  Variance.  This is a measurement of the dispersion or deviation of results from 
the mean of a data set. 
 
 D-5.1.3  Standard Deviation.  This is the square root of the sample variance, it has the 
same unit of measure as the original data. 
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 D-5.1.4  Coefficient of Variation (CV).  This is sometimes called the relative standard de-
viation (RSD), a unitless measure equal to the standard deviation divided by the mean. 
 
 D-5.1.5  Interquartile Range.  This is the difference between the 75th and 25th percentiles, 
it measures the central 50% of the results in the data set. 
 
 D-5.2  Sample Range.  The simplest measure of dispersion to compute is the sample 
range. The sample range (R) is the difference between the largest value and the smallest value of 
the sample: 
 

)1()( xxR n −=  (D-7) 
 
where:  
 

)(nx  = largest ordered value  

)1(x  = smallest ordered value 
 
For small samples, the range is easy to interpret and may adequately represent the dispersion of 
the data. For large samples, the range is not very informative because it only considers (and is 
greatly influenced by) extreme values. 
 
 D-5.3  Sample Variance.  The sample variance measures the dispersion or deviation of 
results from the mean of a data set. 
 
 D-5.3.1  To find the sample variance ( 2s ), compute: 
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 D-5.3.2  If the variance is being manually calculated, a simpler version of this calculation 
is the following: 
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 D-5.3.3  However, this version should not be used when calculating the variance with a 
computer because too much rounding error is introduced into this calculation. 
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 D-5.3.4  A large sample variance implies that there is a large spread among the data, that 
the data are not clustered tightly around the mean. A small sample variance implies that there is 
little spread among the data, and that most of the data are near the mean. Like the mean, the 
sample variance is affected by extreme values and by a large number of non-detected results. 
Note that the sample variance s2 is distinguished from the corresponding population parameter, 
the population variance, σ2. 
 
 D-5.4  Sample Standard Deviation.  The sample standard deviation has the same unit of 
measure as the original data. The sample standard deviation (s) is the square root of the sample 
variance: 
 

2ss =  (D-10) 
 
Frequently, the sample standard deviation will not be an appropriate measure of dispersion 
unless the data are normally distributed.  
 
 D-5.5  Sample Coefficient of Variation.  The CV or RSD is a unitless measure that allows 
the comparison of dispersion across several sets of data because it is scaled to the mean. The 
sample CV is the sample standard deviation divided by the sample mean: 
 

x
s

=CV   (D-11) 

 
The CV is often expressed as a percentage:  
 

%100%RSD
x
s

= .  
 
The CV is often used in environmental applications because variability (expressed as a standard 
deviation) is often proportional to the mean. 
 
 D-5.6  Sample Interquartile Range (IQR).  When extreme values are present, the inter-
quartile range may be more representative of dispersion in the data than the standard deviation. 
This range is not heavily influenced by extreme values because it measures the spread within the 
center portion of a data set, rather than include the most extreme values as does the range. As a 
result, it is useful when the data include a large number of non-detects. Use the directions in 
Paragraph D-6 to compute the 25th and 75th percentiles of the data (x0.25 and x0.75 respectively). 
Then, 
 
 25.075.0IQR xx −=  (D-12) 
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D-6 Examples for Calculating the Measures of Dispersion.  Consider estimating the meas-
ures of dispersion for subsurface soil chromium results (in mg/kg) as follows: 4.60, 5.29, 4.26, 
5.28, 4.53, 5.74, 5.86, and 3.84. The data are ordered as follows:  
 
 5.86 5.74, 5.29, 5.28, 4.60, , 4.53 4.26, , 3.84 ,,, )()2()1( =nxxx K . 
 
 D-6.1  Sample Range (R).  The sample range is simply: 
 
 )1()( xxR n −= 84.386.5 −= 02.2=  
 
 D-6.2  Sample Variance (s2).  Before the variance can be computed, the mean must be 
computed. The mean was computed in Paragraph D-2.2 and is 4.93 mg/kg. Both methods of cal-
culating the variance are illustrated below:  
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 D-6.3  Sample Standard Deviation (s). 
 
 5255.02 == ss 7249.0=  
 
 D-6.4  Sample Coefficient of Variation (CV). 
 

 
x
s

=CV
925.4

7249.0
= = 0.1472 

 
 D-6.5  Sample Interquartile Range (IQR).  The 25th and 75th percentiles of the 
data, 25.0x and 75.0x  respectively, were computed in Paragraph D-4. So: 
 
 25.075.0IQR xx −= 395.4515.5 −= 12.1=  
 
Note that the single data set presented above results in a number of different numerical values 
that all summarize dispersion: 
 

Range  IQR  s s2 CV 
2.0 mg/kg 1.1 mg/kg 0.72 mg/kg 0.52 mg2/kg2 0.15 
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APPENDIX E 
Assumptions of Distribution 

 
Section I 
Introduction 
 
E-1 One of the essential decisions that precedes many statistical calculations is determining 
the statistical distribution. Whether the data can be classified as normally distributed, lognor-
mally distributed, meeting some other distribution, or meeting no distributional assumption, dic-
tates how subsequent calculations and statistical tests are chosen and conducted. Distributional 
assumptions are common in statistical analyses, especially assumptions of normality. Data from 
environmental studies tend to be skewed rather than following a classical bell-shaped curve, or 
normal distribution. Thus, verifying distributional assumptions is critical to a successful statisti-
cal analysis. 
 
E-2 To provide an objective basis for making this decision, statistical tests are available and 
discussed in this Appendix. Tests can be applied to the untransformed data when testing for nor-
mality or to the log-transformed data when testing for lognormality. Normal probability plots 
should also be constructed and examined as described in Appendix J. 
 
Section II 
Probability Distributions 
 
E-3 Introduction.  Many statistical tests and models are appropriate only for data that follow 
a particular distribution. For a continuous variable X (e.g., the concentration of a contaminant), 
the distribution is modeled by a mathematical function of the form: P = P(X), where P(X) is re-
ferred to as the probability density function or probability distribution. A plot of P versus X gen-
erates a curve. The area (integral) under the curve between any two points, Xa and Xb, gives the 
probability that the random variable X lies between the two points, P(Xa ≤ X ≤ Xb), which will be 
a number between 0 and 1. The total area under the entire curve is always 1. Figure E-1 plots 
P(X) and shows how P(5 < X < 6) would be found. 
 
 E-3.1  A common use of probability density functions is to calculate population percen-
tiles for the distribution. For example, if X0.95 is the value such that P(X ≤ X0.95) = 0.95, then X0.95 
is referred to as the 95th (population) percentile or 0.95 quantile of X. In general, Xp denotes the 
p100th percentile or p quantile of X. Appendix D covers techniques to estimate the population 
percentile from sample data. 
 
 E-3.2  Two of the most important distributions for tests involving environmental data are 
the normal and the lognormal probability distributions. When a parametric statistical test is per-
formed on some set of measured values of X ( nxxx ,,, 21 K ), some specific probability density 
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function, P(X), is either known or assumed. This section will provide guidance for determining if 
the distributional assumption of a given statistical test is satisfied; in particular, the assumption 
of normality, as this assumption is fundamental to virtually all parametric statistical tests.  
 

2 3 4 5 6 7 8

X

0.0

0.1

0.2

0.3
P(5<X<6)

 
 

Figure E-1. Probability density function. 
 

 E-3.1  Normal Distribution.  If the variable X possesses a normal or Gaussian distribution 
(i.e., is said to be normally distributed), then the probability density function for X is  
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 E-3.1.1  A plot of X versus P(X) generates a bell-shaped curve. Two such curves are 
shown in Figure E-2. The function P(X) depends on two parameters (constants), the population 
mean, μ , and the population standard deviation, σ , where 0>σ . It is often useful to work 
with the square of the standard deviation, 2σ , which is referred to as the population variance. 
Note that the normal distribution is symmetrically centered about the mean, μ , and tapers off 
rapidly at the tails. Because exactly 50% of the distribution falls below the mean, the median 
(50th percentile) of the normal distribution is equal to the mean. The value of the parameter σ  
affects the shape of the distribution. In particular, as shown in Figure E-2, as the value of the 
standard deviation is increased from 1σ  to some value 12 σσ > , the “spread” of the distribution 
about the mean increases. Because a normal distribution depends upon the parameters, μ  and 
σ , it is often denoted by ( )σμ,N . 
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 E-3.1.2  The normal distribution is critical because measurement data (e.g., a set of con-
centration measurements) can often be modeled by it. When it is known or it can be assumed that 
a set of measurements, nxxx ,,, 21 K , follow a normal distribution, then the sample mean, x , is a 
good estimate of the population mean, μ . Also the sample standard deviation, s , is a good esti-
mate for the population standard deviation, σ .  (Refer to Appendix D for the definitions of the 
sample mean and standard deviation.)   

X
μ

σ1

σ2

σ1 < σ2

           

-4 -2 0 2 4

Z

μ

σ = 1

 
 

Figure E-2. Normal distribution. Figure E-3. Standard normal (Z)  curve. 
 
 E-3.1.3  It can be shown, if the random variable X possesses a normal distribution, then 
the random variable 
 

 ( )
σ

μ−
=

XZ  (E-2) 

 
has a standard normal distribution, ( )1,0N . The probability density function of the standard nor-
mal distribution is illustrated in Figure E-3. Using the notation from above, we can denote the 
p100th percentile (p quantile) of Z  as Zp. The standard normal distribution is important since the 
percentiles Zp are commonly listed in statistical tables like Table B-15.  
 
 E-3.1.4  For example, if random variable X is ( )2,3N , we can use Table B-15 to find 

95.0X  as follows. Find the closest value to 0.95 in the interior of Table B-15. In this case 0.9495 
and 0.9505 are equally distant. Find 95.0Z  by the value to the far left of the row found in the last 
step and the top of the column. Here, it is necessary to interpolate between 1.64 and 1.65 to get 

645.195.0 =Z . Figure E-4 demonstrates that 95% of the area under the standard normal density 
curve (the shaded area) lies to the left of 1.645. Returning to the stated problem, solve Equation 
E-2 for X to get: 
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 σμ pp ZX +=  (E-3) 
 
so in this example, 
 
 29.6)2(645.1395.0 =+=X . 
 

-3 -2 -1 0 1 2 3 4
Z

Z0.95 = 1.645

 
 

Figure E-4. 95th percentile of the standard normal distribution. 
 
 E-3.1.5  Because the standard normal distribution is symmetrical about a mean of zero, 
Z1–α = –Zα. Thus, the area of the standard normal curve that falls between Z1–α and Zα is equal to 
1 – 2α (e.g., for α = 0.05, 90% of the distribution falls between Z0.05 = –1.645 to Z0.95 = 1.645). It 
follows from Equation E-1 that, in terms of the variable X, the proportion 1 – 2α (equivalently, 
100(1 – 2α)%) of the distribution falls between Xα = μ + Zα σ and X1-α = μ + Z1–α σ. Because Z1–

α = –Zα, 100(1 – 2α)% of the distribution falls within μ ± Z1–ασ. Some examples are presented 
below: 
 

• 90% of the distribution (α = 0.05) falls within the interval μ ± 1.645σ. 
 
• 95% of the distribution (α = 0.025) falls within the interval μ ± 1.960σ. 
 
• 99% of the distribution (α = 0.005) falls within the interval μ ± 2.576σ. 
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• 99.9% of the distribution (α = 0.0005) falls within the interval μ ± 3.291σ. 

 
 E-3.1.5  Thus, approximately 95% of the distribution falls within two standard deviations 
of the mean (μ ± 2σ) and over 99% (in fact, about 99.7%) of the distribution falls within three 
standard deviations of the mean (μ ± 3σ). It can similarly be shown that about 68% of the distri-
bution falls within one standard deviation of the mean. 
 
 E-3.1.6  Finally, a useful property of the normal distributions is that that any linear com-
bination of normally distributed variables will also be normally distributed. In particular, let  
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n
XXX

Y n+++
=
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where each random variable iX  follows the same normal distribution ( )σμ,N . It can be shown 
that the random variable Y is distributed as  
 

 ⎟⎟
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N σμ, .  

 
This is extremely useful because the definition of Y is very similar to the definition of the sample 
mean, x , presented in Appendix G. Thus, if the variable X is normally distributed, with mean μ 
and standard deviation σ, a set of n measurements of X are taken, the sample mean x  is calcu-
lated for the set of n measurements, and this process could be repeated indefinitely. The resulting 
distribution of values of the sample mean will be normally distributed with mean and standard 
deviation: 
 
 μμ =x ,  nx /σσ =  
 
 E-3.1.7  It also follows that 
 

 ( )
( )n
xZ
σ

μ−
=  (E-4) 

 
will follow a standard normal distribution. Although σ  is not typically known, it can be shown 
that for sufficiently large n, 
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 ( )
( )ns
xZ μ−

=  (E-5) 

 
is closely approximated by a standard normal distribution. Furthermore, if X is normally distrib-
uted and n is large, then an approximate p100% upper bound can be calculated for the population 
mean from the above equation. 
 
 )/( nsZx p+≤μ  (E-6) 
 
 E-3.1.7  The right side of inequality is approximately the p100% upper one-sided confi-
dence limit (UCL) of the population mean. For example, if p = 0.95, then the right side of the 
inequality is the 95% UCL of the population mean. For p = 0.95, the population mean μ will be 
less than the UCL an average of 95 out of 100 times. The calculation of a 95% UCL is typically 
used in environmental risk assessments. 
 
 E-3.1.8  Lastly, it should be noted that the UCL is useful because of the central limit 
theorem. According to the central limit theorem, Equation E-6 is approximately valid for n suffi-
ciently large regardless of whether or not the measurement variable X is normally distributed. 
The central limits theorem is discussed below. 
 
E-4 Central Limit Theorem.  The central limit theorem states: 
 

If a variable X possesses ANY probability distribution with mean (μ) and finite standard deviation (σ), then 
the sample mean ( x ) will be approximately normally distributed with mean (μ) and standard deviation 
( )/ nσ ) if n is sufficiently large.  

 
 E-4.1  In other words, if a set of n data points is collected and the sample mean is calcu-
lated, and this process is repeated many times and all the resulting values of sample mean are 
plotted (on a histogram), then the resulting distribution will be approximately normal if n is large 
(i.e., n > 50). As the size of the sample increases, the mean of that sample acts increasingly as if 
it came from a normal distribution regardless of the true distribution of the individual values. As 
a consequence, statistical tests that require normality may be performed using the sample mean. 
Thus, large sample sizes are desirable within the limits imposed by available resources. 
 
 E-4.2  The central limit theorem is important for environmental applications, because the 
mean of a random sample of observations or measurements is frequently of interest (for example, 
to calculate an exposure point concentration for a risk assessment). Furthermore, no actual envi-
ronmental data set is completely normal. The assumption of normality for any data set will al-
ways be an approximation. In many cases, the normality based statistical tests are not overly 
affected by a small or even moderate deviation from normality as the tests are robust (sturdy) and 
perform tolerably well, unless gross non-normality is present. The central limit theorem ensures 
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that tests become increasingly tolerant of deviations from normality as the number of individual 
samples constituting the sample mean increases.  
 
E-5 Student’s t Distribution.  The Student’s t distribution is a continuous probability distri-
bution that is similar in shape to the standard normal distribution. Like the standard normal dis-
tribution, the t distribution is a bell-shaped curve that is symmetrical about a mean of zero. 
However, the t distribution is somewhat flatter in the center and possesses fatter tails than the 
standard normal distribution. Furthermore, the shape of the t distribution is dependent upon the 
“degrees of freedom,” ν (the Greek letter nu). Each value of ν (ν = 1, 2, 3 …) gives rise to a dif-
ferent t distribution curve. The degree of “fatness” in the tails of a t distribution depends upon the 
value of ν. As ν increases, the t distribution approaches a normal distribution. These properties 
are illustrated in Figure E-5. For most practical applications, the t distribution may be approxi-
mated using a standard normal distribution when ν > 30. The mathematical function that defines 
the probability distribution is more complex than that for the normal distribution and is not pre-
sented. 
 
 E-5.1  The standard normal curve is used when the mean (μ) and standard deviation (σ) 
of a normally distributed population of interest are known. When only an estimate of the stan-
dard deviation (s) is available from a sample, the t distribution applies. More precisely, if the 
variable X possesses a normal distribution, then the variable: 
 

 

n
s

xt μ
ν

−
=  (E-7) 

 
possesses a t distribution with 1−= nν  degrees of freedom. The p100% percentiles (p quantiles) 
of the t distribution are denoted as tp,ν. This value can be found using Table B-23. Find the row 
matching the degrees of freedom, ν , on the left side of the table. Find the column containing the 
value p along the top of the table. The value of tp,ν is found at the intersection of this row and col-
umn. For example, t0.95,10 = 1.812. 
 
 E-5.2  Note that the equation that defines tp,ν provides the basis for calculating an upper 
bound for the mean (μ) when μ is unknown but the sample mean is normally distributed. It can 
be shown that 
 
 )(, n

stx p νμ +≤  (E-8) 

 
where the sample mean ( x ) and the sample standard deviation (s) are calculated for some set of 
n data points and the value tp,ν is obtained from Table B-23. Roughly speaking, the probability 
that the population mean will be less than or equal to the right side of the above inequality is 
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p100%. The right side of the above inequality is referred to as the upper one-sided p100% confi-
dence limit of the population mean or simply as the 95% UCL of the population mean. 
 

-4 -2 0 2 4

ν = 1

ν = 6

Z

 
Figure E-5. Comparison of t-distribution to stan-
dard normal. 

 
E-6 Lognormal Distribution.  It is not uncommon for environmental data to follow a log-
normal distribution. Data collected from contaminated sites often possess a skewed probability 
distribution that is easily modeled by a lognormal distribution (EPA 600/R-97/006). This occurs 
because contaminant concentrations are constrained to be non-zero values, with very high values 
near a source and declining contaminant concentrations away from source areas. 
 
 E-6.1  The lognormal distribution is a continuous, non-symmetrical, positively skewed 
probability distribution that is bounded to the left by zero. However, like the normal distribution, 
the lognormal distribution is completely characterized by two parameters that represent the popu-
lation mean and standard deviation of the log-transformed distribution. Several lognormal distri-
butions are shown in Figure E-6. 
 
 E-6.2  There is a simple relationship between the normal and lognormal distributions. If X 
is lognormally distributed, then Y = Ln(X) is normally distributed. Though the probability distri-
bution is a non-symmetrical, positively skewed curve (where the median of the distribution is 
less than the mean), the probability distribution for Y = Ln(X) is the symmetrical, bell-shaped 
normal curve. It is a common practice to transform data using the natural log function to achieve 
approximate normality prior to conducting statistical tests. Just as the notation N(μ, σ) was used 
to denote a normal distribution, a lognormal distribution will be denoted by Λ(μ, σ2), where μ 
and σ2, denote the population mean and variance, respectively, of the normally distributed vari-
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able Y = Ln(X) (rather than the lognormally distributed variable X). For brevity, the following 
notation will be used to indicate that X possesses a log normal distribution: X ∼ Λ(μ, σ2), or, 
equivalently, Ln(X) ∼ N(μ, σ). 
 

0 1 2 3 4 5 6 7 8

X μ = 1

σ = 1
σ = 0.5

σ = 2

 
Figure E-6. Lognormal distributions. 

 
 E-6.3  Because any linear combination of normally independent distributed variables will 
be also be normally distributed, owing to the relationship Y = Ln(X), the product a set of inde-
pendent lognormally distributed variables will also be lognormally distributed. For example, if 
X1 ∼ Λ(μ1, σ1

2), and X2 ∼ Λ(μ2, σ2
2), then  

 
 X1 X2 ∼ Λ(μ1+ μ2, σ1

2 + σ2
2)  

 
 X1/X2 ∼ Λ(μ1 – μ2, σ1

2 + σ2
2).  

 
Also, if X ∼ Λ(μ, σ 2), then  
 
 cXb ∼ Λ(aμ + b, b2σ 2) 
 
where c and b are constants, where c = exp(a) > 0 and b ≠ 0. 
 
 E-6.4  The lognormal distribution Λ(μ, σ 2) is mathematically described by: 
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The population mean, Xμ , and standard deviation, Xσ , of the lognormally distributed variable X 
are calculated as: 
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 ( ) ( )[ ] ]1)[exp(1exp2exp 22222 −=−+= σμσσμσ XX . (E-11) 
 
It follows that the (population) coefficient of variation of X is 
 

[ ] 2/12 1)exp(/ −== σσμ XXCV . 
 
The p100% population percentile (p quantile), Xp, can be found from the corresponding p100% 
percentile of the standard normal distribution, Zp, as follows: 
 

 ( )σμ pP ZX += exp . (E-12) 
 
E-7 Binomial Distribution.  The binomial distribution is useful in describing the number of 
successful outcomes, K , from a set number of observations, n . The distribution is considered 
binomial if the following conditions are satisfied (Moore, 1999): 
 

• The number of observations, n, is fixed. 
 

• The n observations are all independent; that is, each observation has no effect on any 
other. 

 
• Each observation falls into one of two mutually exclusive categories: Each observation is 

either a “success” or a “failure.” 
 

• The probability each observation is a “success” is p. (The probability each observation is 
a “failure” is 1– p). 

 
 E-7.1  A common example that gives rise to a binomial distribution would be counting 
the number of heads (successes) obtained from flipping a coin a set number of times. As the 
number of successful outcomes, K , is a discrete rather than continuous random variable, then 
the value of the variable K can equal any integer value from 0 to n . The binomial probability 
distribution is described mathematically by: 
 

 ( ) ( )
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The population mean, μ , and standard deviation, σ , are given by: 
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 np=μ  (E-14) 
 
 ( )pnp −= 1σ  . (E-15) 
 
 E-7.2  Table B-1 gives probabilities for the binomial in terms of cumulative probability 
distribution. That is, the table reports: 
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For example, for n = 4 and p = 0.5, ( ) 6875.02 =≤KP . 
 
 E-7.3  The binomial distribution under certain conditions can be related to the normal dis-
tribution (and the Poisson distribution, as seen in Paragraph E-8). In particular, as n  becomes 
large, the binomial distribution gets close to a normal distribution with mean, np , and standard 
deviation, ( )pnp −1 . As a rule, this approximation should be used only when both np  and 

( )pn −1  are larger than 10 (Moore, 1999). 
 
E-8 Poisson Distribution.  The Poisson distribution is useful in describing the number of oc-
currences of an event over a fixed interval of time. A distribution is considered a Poisson distri-
bution if the following conditions are satisfied: 
 

• The event is a rare occurrence. 
 
• The occurrence of two or more events in a small interval of time is zero. 
 
• A large number of independent observations are made. 
 
• The average number of occurrences, λ, over some fixed interval of time is constant (Ma-

son et al., 1989). 
 
 E-8.1  The Poisson distribution is typically used to describe or predict rare events. Data 
from a Poisson distribution must be independent and must be composed of only two responses, 
such as detected or not detected. Poisson distributions are common when counting the number of 
detected or not detected occurrences with environmental data that contain only a small percent-
age of detected concentrations. The probability for one of the two mutually exclusive outcomes 
must be small. Therefore, the Poisson distribution can be used for highly censored environmental 
data because the detection of an analyte in a sample would constitute a rare event. This often oc-
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curs for background data when organics are being analyzed (most of the results are reported as 
not detected).  
 
 E-8.2  The Poisson distribution can be used with background data to calculate upper lim-
its for the number of detections for each organic analyte. The limits would subsequently be com-
pared to the study area data to determine if detections for a given organic analyte are being 
obtained more frequently for the study area than for the background area. 
 
 E-8.3  The Poisson distribution may be used for highly censored environmental data in 
one of two ways. In the first approach, X denotes the number of times an analyte is detected. If 
the variable X follows a Poisson distribution, then the probability density function is described 
mathematically by: 
 

 ( )
!

xeP X x
x

μμ −

= =  (E-17) 

 
where μ  denotes the mean of the Poisson distribution (such as the average number of times the 
analyte is detected). For example, if n  analyses are performed ( n  background wells are analyzed 
for an analyte) and the analyte is detected k  times, then the average number of detections, μ , is 
approximately: 
 

 .
n
kx =≈μ  

 

Data following a Poisson distribution have an equal mean and variance (i.e., μ = σ2).  
 
 E-8.4  When n is large and p is small, the binomial distribution and the Poisson distribu-
tion give similar results. If follows from Equation E-14 that the probability of detecting the given 
analyte k  out of n  times can be calculated using the binomial distribution using the relationship: 
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 E-8.5  For example, if 6=k and 100=n , then 
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Using the Poisson distribution, we find that the probability of one detection is  
 

 056506.0
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Using the binomial distribution, we find that the probability is: 
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−
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As previously stated, these probabilities are very similar as p is small and n is large. 
 
 E-8.6  In a second approach, X  may denote the concentration per sample rather than the 
number of detections. In this context, sometimes referred to as the “molecular approach,” n sam-
ples are analyzed, the analyte is detected in the ith sample at a concentration of ix , and units for 
the n  measurements are selected such that 1>ix . For example, 2μg / L 2ppb.ix = =  In this ex-
ample, the ith sample is detected at two units or occurrences per billion units of sample examined. 
(The Poisson distribution is appropriate since the ratio of analyte to sample is small.) The mean 
concentration per sample (mean number of units per billion units of sample examined) will be: 
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xμ   (E-18) 

 
Using this approach, we can readily calculate the probability that the analyte will be detected at a 
concentration X  when X is a whole number.  

 
 E-8.7  Note the difference between the two approaches. For the first approach, the mean 
number of detections for a set of n samples is being calculated. A detection, regardless of the 
magnitude of the reported concentration greater than the detection limit, consists of a unit count 
for the calculation of the mean. In the second approach, the mean concentration or number of 
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counts per sample is being calculated; thus, the magnitude of detected concentrations for an indi-
vidual sample influences the estimation of the mean. 
 
 E-8.8  A useful property of the Poisson distribution is that, if the independent variables 
X1, X2…Xn possess Poisson distributions with means μ1, μ2…μn, respectively, then the sum of the 
variables 
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has a Poisson distribution with mean 
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Therefore, if all of the means μi = μ, it follows that μμ nY =  and ∑
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 E-8.9  As the parameter, μ , becomes very large, the Poisson distribution can also be ap-
proximated by a normal distribution. In this case the mean and variance of the normal distribu-
tion equal to μ . 
 
E-9 Nonparametric (Distribution Free).  Nonparametric statistical methods are used when 
it is inappropriate to assume some underlying distribution for a data set (when a data set does not 
conform to some desired theoretical probability distribution). Sometimes it is difficult to verify 
or satisfy the assumptions that are associated with parametric distributions, such as normal and 
lognormal distributions for environmental data sets. Using parametric statistical tests when the 
appropriate assumptions have not been met can result in inaccurate conclusions. In this situation, 
nonparametric (distribution free) statistical procedures would be appropriate and recommended 
(Gilbert, 1987; Hahn and Meeker, 1991). 
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APPENDIX F 
Testing for Normality 

 
Section I 
Methods for Determining Normality 
 
F-1 Introduction.  As previously stated, the assumption of normality is important because it 
is required for many statistical tests. A normal, or Gaussian, distribution is one of the most com-
mon probability distributions used for the analysis of environmental data. A normal distribution 
is a reasonable model of the behavior of certain random phenomena and can often be used to ap-
proximate other probability distributions. In addition, the central limit theorem and other limit 
theorems state that, as the sample size gets large, some of the sample summary statistics (e.g., the 
sample mean) behave as if they are a normally distributed variable. As a result, a common as-
sumption associated with parametric tests or statistical models is that the errors associated with 
data or models follow a normal distribution. Therefore, this Appendix will focus on statistical 
tests that are used to determine whether normality can be reasonable assumed for a set of meas-
ured results. 
 
 F-1.1  In general, any distribution assumption should be verified using a combination of 
graphical plots and statistical tests. Environmental data commonly exhibit frequency distribu-
tions that are non-negative and positively skewed (i.e., possess long right tails). Several paramet-
ric probability distributions have these properties, including the Weibull, gamma, and lognormal 
distributions. The methods for testing for normality described in this Appendix can be used to 
test for lognormality if a logarithmic transformation has been applied to the data. 
 
 F-1.2  There are many methods available for verifying the assumption of normality, rang-
ing from simple to complex. They are listed in Table F-1 below. It should be noted that statistical 
tests for normality do not actually demonstrate normality but the lack of normality. They rely on 
the probability a given data set is normal (e.g., statistical software typically reports a “p value” 
for the hypothesis that the population distribution is normal). If the probability is low (e.g. 

01.0<p ), one “rejects the assumption of normality,” that is, one concludes, based upon weight 
of evidence, that the data set is not normal. However, if the assumption of normality is not re-
jected, then, strictly speaking, the statistical test is inconclusive; the data may or may not be 
normal. This constitutes an additional reason to visually examine the data set for normality and 
to decide whether to proceed with a statistical test that requires normality. In practice, if the as-
sumption of normality is not rejected and graphical plots suggest normality, the statistical tests 
that rely upon normality are typically used. 
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Table F-1 
Methods Available To Verify the Assumption of Normality 

Test Sample Size, 
n 

Recommended Use 

Graphical Methods Any Highly recommended in conjunction with test methods. 

Shapiro-Wilk W Test ≤ 50 Highly recommended 
(D’Agostino’s test may be used when sample size is between 50 
and 1000). 

Filliben’s Statistic ≤ 100 Highly recommended. 

Coefficient of Variation Test Any Only use to quickly discard an assumption of normality and for 
screening only.  

Geary’s Test > 50 Useful when tables for other tests are not available. 

Studentized Range Test ≤ 1000 Use for screening purposes only. 

Chi-square Test Large Useful for grouped data and when the comparison distribution is 
known. 

Lilliefors Kolmogorov-
Smirnoff Test 

> 50 Useful when tables for other tests are not available. 

 
F-2 Graphical Methods. 
 
 F-2.1  Graphical methods present qualitative information about data sets that may not be 
apparent from statistical tests. Histograms and normal probability plots are some graphical meth-
ods that are useful for determining whether data follow a normal curve. The histogram of a nor-
mal distribution is bell-shaped. The normal probability plot (Appendix J) of a normal distribution 
follows a straight line. For non-normally distributed data, there will be large deviations in the 
tails or middle of a normal probability plot. Extreme deviations from normality are often readily 
identified from graphical methods. However, in many instances the decision is not straightfor-
ward. Using a plot to decide whether a data set is normally distributed involves making a subjec-
tive decision; formal test procedures are usually necessary to test the assumption of normality. 
 
 F-2.2  In general, both statistical tests and graphical plots should be used to evaluate 
normality. The assumption of normality should not be rejected on the basis of a statistical test 
alone. In particular, when a large number of data are available, statistical tests for normality can 
be sensitive to very small (i.e., negligible) deviations in normality. Therefore, if a very large 
number of data are available, a statistical test may reject the assumption of normality when the 
data set, as shown using graphical methods, is essentially normal and the deviation from normal-
ity too small to be of practical significance. 



EM 1110-1-4014 
15 Jan 07 

 

F-3 

 
F-3 Shapiro-Wilk Test for Normality. 
 
 F-3.1  General.  One of the most powerful and most commonly employed tests for nor-
mality is the W test by Shapiro and Wilk, also called the Shapiro-Wilk test. The Shapiro-Wilk 
test is an effective method for testing whether a data set has been drawn from an underlying 
normal distribution. It can also evaluate lognormality if the test is conducted on logarithms of the 
data. This test is similar to computing a correlation between the quantiles of the standard normal 
distribution and the ordered values of a data set. If the normal probability plot is approximately 
linear (the data follow a normal curve), the test statistic will be relatively high. If the normal 
probability plot has curvature that is evidence of non-normality in the tails of a distribution, the 
test statistic will be relatively low. The Shapiro-Wilk test is recommended in several EPA guid-
ance documents and in many statistical texts. It is designed so that the burden of proof rests on 
showing evidence that the data are not normally distributed. (In terms of hypothesis testing, the 
Shapiro-Wilk test is based on H0 that the data are normally distributed. Hypothesis testing is ad-
dressed in detail in Appendices L, M, and N.) 
 
 F-3.1.1  The Shapiro-Wilk test is good for evaluating whether a sample set of data has 
been drawn from a normal or lognormal distribution. However, this test will not have very much 
power to reject the null hypothesis of normality or lognormality if the sample size is very small 
(i.e., the test would fail to detect non-normal behavior when the sample size is small). The 
method for calculating the W statistic is presented below in Paragraph F-3.2. 
 
 F-3.1.2  As this test is laborious to compute by hand, statistical software packages such as 
SAS, WQ Stat, Statistica, and the Data Quality Assessment Toolbox (QA/G-9D) are recom-
mended. An example calculation is presented below in Paragraph F-3.3. 
 
 F-3.1.3  D’Agostino’s test is an extension of the Shapiro-Wilk test. It is based on an esti-
mate of the standard deviation obtained using the ranks of the data. This estimate is compared to 
the usual estimate of the standard deviation, which is appropriate for the normal distribution. The 
D’Agostino’s test is recommended for sample sizes between 50 and 1000. 
 
 F-3.1.4  Another test related to the W test is Filliben’s statistic, also called the probability 
plot correlation coefficient. This statistic measures the linearity of the points on the normal prob-
ability plot. Similar to the Shapiro-Wilk test, if the normal probability plot is approximately lin-
ear (the data follow a normal curve), the correlation coefficient will be relatively high. If the 
normal probability plot contains significant curves (the data do not follow a normal curve), the 
correlation coefficient will be relatively low. Filliben’s statistic is recommended for sample sizes 
less than or equal to 100. Although easier to compute than the Shapiro-Wilk test, Filliben’s sta-
tistic is still difficult to compute by hand. It is available in the Data Quality Assessment Toolbox 
(QA/G-9D) and various software packages. 
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 F-3.2  Directions for the Shapiro-Wilk W Test.  Order the data points, x(1), x(2), ..., x(n), 
where x(1) is the smallest value and x(n) is the largest value of the n observations.  
 
 F-3.2.1  Estimate the sample standard deviation, s. Compute the Shapiro-Wilk test statis-
tic:   
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 F-3.2.2  The coefficients a  can be found for any sample size between 3 and 50 in Table 
B-19 of Appendix B. The value k is the greatest integer less than or equal to 2/n .  
 
 F-3.2.2.1  Reject normality if the calculated statistic W < Wα , where the critical values 
Wα are listed in Table B-20 of Appendix B.  

 
 F-3.2.2.2  If W ≥ Wα, do not reject the assumption of normality. Typically, one assumes 
the data are approximately normal for further statistical analysis. 
 
 F-3.3  Example of Shapiro-Wilk W Test.  Consider using the Shapiro-Wilk to test the sub-
surface soil background chromium results for normality. The results (in mg/kg) are as follows: 
4.60, 5.29, 4.26, 5.28, 4.53, 5.74, 5.86, and 3.84. 
 
 F-3.3.1  Hypothesis test for Shapiro-Wilk W test: 

 
H0: The data are normally distributed. 
 
HA: The data are not normally distributed. 

 
 F-3.3.2  Estimate the sample standard deviation, 0.7249. 5255.0 ==s  
 
 F-3.3.3  Compute Shapiro-Wilk test statistic W, where n = 8, k = 8/2 = 4 and b = 1.859: 
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Using an α  level of 0.05 and n = 8, we find the critical value, Wα, from Table B-20 to be 0.818. 
As W > 0.818, there is insufficient evidence to reject the assumption of normality. 
 

)(ix  
)1( +− inx  )1()( +−− ini xx  )1( +−ina  

ib  
3.84 5.86 2.02 0.6052 1.2200 
4.26 5.74 1.48 0.3164 0.4683 
4.53 5.29 0.76 0.1743 0.1325 
4.60 5.28 0.68 0.0561 0.0381 
5.28 4.60 –0.68   
5.29 4.53 –0.76   
5.74 4.26 –1.48   
5.86 3.84 –2.02   

 
F-4 Coefficient of Variation.  The coefficient of variation (CV) may be used to quickly de-
termine whether or not data follow a normal curve by comparing the sample CV to 1. However, 
the CV evaluation is not reliable. The use of the CV is valid only for some environmental appli-
cations if the data represent a non-negative characteristic, such as contaminant concentrations. If 
the CV is much greater than 1, the data should not be modeled with a normal curve. However, 
this method should not be used to conclude the opposite; do not conclude that the data can be 
modeled with a normal curve if the CV is less than 1. Furthermore, the sample CV )/( xs  can be 
greater than 1 when the population CV )/( μσ  is between 0.5 and 1. This is because of the sam-
ple CV being a random variable and estimating the true CV with some degree of error (EPA 68-
W0-0025). This test is to be used only in conjunction with other statistical tests or when graphi-
cal representations of the data indicate extreme departures from normality. Details for estimating 
the CV are presented in Appendix D. 
 
F-5 Range Tests 
 
 F-5.1  General.  Range tests for normality have been developed based on the knowledge 
that virtually 100% of the area of a normal curve lies within plus and minus 5 standard devia-
tions from the mean. Two such tests, which are both simple to apply, are the Studentized range 
test and Geary’s test. Both of these tests use a ratio of an estimate of the sample range to the 
sample standard deviation. Very large and very small values of the ratio then imply that the data 
are not well modeled by a normal curve. These range tests are not as reliable as the previously 
discussed tests, and are recommended only if computer procedures or look-up tables for the other 
tests are not available. However, both range tests are relatively simple to use, so they are pre-
sented here. 
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 F-5.1.1  The Studentized range test compares the range of the sample to the sample stan-
dard deviation. Tables of critical values for sample sizes up to 1000 (Table B-21 of Appendix B) 
are available for determining whether the absolute value of this ratio is significantly large.  
 
 F-5.1.2  Directions to conduct the Studentized range test and an example of this test fol-
low in Paragraph F-5.2. 
 
 F-5.1.3  The Studentized range test does not perform well if the data are asymmetric and 
if the tails of the data are heavier than the normal distribution. In addition, this test may be sensi-
tive to extreme values. Unfortunately, lognormally distributed data, which are common in envi-
ronmental applications, have these characteristics. If the data appear to be lognormally 
distributed, then this test should not be used. In most cases, the Studentized range test performs 
as well as the Shapiro-Wilk test and is easier to apply.  
 
 F-5.1.4  Alternatively, Geary’s test uses the ratio of the mean deviation of the sample to 
the sample standard deviation. This ratio is then adjusted to approximate a standard normal dis-
tribution.  
 
 F-5.1.5  Directions for calculating Geary’s test are presented below in Paragraph F-5.3 
 
 F-5.1.6  This test does not perform as well as the Shapiro-Wilk test or the Studentized 
range test. However, because Geary’s test statistic is based on the normal distribution, critical 
values for all possible sample sizes are available. An example application of Geary’s test follows 
in Paragraph 5-4.  
 
 F-5.2  Directions and an Example of Studentized Range Test.   
 
 F-5.2.1  Directions. 
 

• Calculate sample range (R) and sample standard deviation (s). 
 

• Calculate the ratio R/s. 
 

• Compare to the critical values for R/s given in Table B-21 (labeled a and b). 
 
If the calculated value of R/s falls outside the two critical values, then the data do not follow a 
normal curve. 
 
 F-5.2.2  Example.  Consider using the Studentized range test to determine if the subsur-
face soil background chromium results can be modeled using a normal curve. The results are 
(in mg/kg) as follows: 4.60, 5.29, 4.26, 5.28, 4.53, 5.74, 5.86, and 3.84. 
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 Sample range 02.284.386.5 =−=R  
 
 Sample standard deviation 0.7249. 5255.0 ==s  
 

787.27249.0/02.2/ ==sR  . 
 
The critical values for R/s in Table B-21 for n = 8 and α  = 0.05 are 2.50 and 3.399. As 2.787 
falls between these values, the assumption of normality is not rejected. 
  
 F-5.3  Directions for Calculating Geary’s Test.  Calculate the sample mean x , the sam-
ple sum of squares (SSS), and the sum of absolute deviations (SAD): 
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 F-5.3.1  Calculate Geary’s test statistic  
 

 
)SSS(

SAD
n

a =′  . 

 
 F-5.3.2  Test a for significance by computing  
 

 
n

az
/2123.0

7979.0−′
=  . 

 
Here, 0.7979 and 0.2123 are constants used to achieve normality. 
 
 F-5.3.3  Use Table B-15 of Appendix B to find the critical value α−1Z  such that 100(1 – 
α )% of the normal distribution is below α−1Z . For example, if α  = 0.05, then α−1Z = 1.645. The 
statistic a′  is sufficiently small or large to conclude the data are not normally distributed if z  > 

α−1Z . 
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 F-5.4  Example of Geary’s Test.  Consider using Geary’s test to see if the subsurface soil 
background chromium results can be modeled using a normal curve. The results are (in mg/kg) 
as follows: 4.60, 5.29, 4.26, 5.28, 4.53, 5.74, 5.86, and 3.84. 
 
 F-5.4.1  Calculate the sample mean x : 
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 F-5.4.2  Calculate the SSS: 
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So, 68.305.19473.197SSS =−= . 
 
 F-5.4.2  Calculate the sum of absolute deviations (SAD): 
 

 925.426.4925.429.5925.460.4SAD
1
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925.474.5925.453.4925.428.5 ++−+−+  

94.4925.484.3925.486.5 =−+−+  . 
 
 F-5.4.3  Calculate Geary's test statistic:  
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 F-5.4.4  Test a′  for significance by computing: 
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Here, 0.7979 and 0.2123 are constants used to achieve normality. 
 
 F-5.4.5  Using Table B-15 of Appendix B to find the critical value α−1Z , where α  = 0.05, 
then α−1Z = 1.645. Since 49.1 >/ 645.1 , there is not enough information to conclude that the data 
do not follow a normal distribution.  
 
F-6 Goodness-of-Fit Tests.  Goodness-of-fit tests are not practical to do manually. Because 
these are included in most statistical software packages, detailed instructions for doing them are 
not included. Following is a brief overview of these tests with recommendations for their use. 
 
 F-6.1  Goodness-of-fit tests are used to determine whether data conform to some theoreti-
cal probability distribution. However, unlike the tests previously discussed, these tests can be 
used to see if a data set fits any specified probability distribution, not just the normal distribution. 
In contrast, the Shapiro-Wilk test can be used only to determine whether a data set is normally 
distributed. 
 
 F-6.2  There are many different goodness-of-fit tests. One classic test is the chi-square 
test, which partitions the data into groups, comparing these to the expected groups from a known 
distribution. There are no fixed methods for selecting these groups, and this test requires a large 
sample size because at least five observations per group are required to implement it. In addition, 
the chi-square test does not have the power of the Shapiro-Wilk test or some of the other tests 
mentioned. For these reasons, the chi-square test is not recommended. 
 
 F-6.3  Another way of using a goodness-of-fit test is based on the empirical distribution 
function. Empirical distribution functions estimate the true cumulative distribution functions un-
derlying a set of data. An empirical distribution is generated from the data set and compared to 
the theoretical cumulative distribution. If the empirical distribution function is not close to the 
given cumulative distribution function, then there is evidence that the data do not come from that 
function.  
 
 F-6.4  Various methods have been used to measure the discrepancy between the sample 
empirical distribution function and the theoretical cumulative distribution function. These meas-
ures are referred to as empirical distribution function statistics. The best known of these is the 
Kolmogorov-Smirnov (K-S) statistic. The K-S approach is appropriate if the sample size exceeds 
50 and if F(x) represents a specific distribution with known parameters (e.g., a normal distribu-
tion with μ = 100 and σ2 = 30). A modification to the test, called the Lilliefors K-S test, is appro-



EM1110-1-4014 
15 Jan 07 
 

F-10 

priate when n > 50 for testing that the data are normally distributed and when the F(x) is based 
on an estimated mean and variance. 
 
 F-6.5  Unlike the K-S type statistics, most empirical distribution function statistics are 
based on integrated or average values between the empirical and cumulative distribution func-
tions. The two most powerful are the Cramer-von Mises and Anderson-Darling statistics. Exten-
sive simulations show that the Anderson-Darling empirical distribution function statistic is as 
effective as any, including the Shapiro-Wilk statistic, when testing for normality. However, the 
Shapiro-Wilk test is applicable only to a normal distribution, while the Anderson-Darling 
method is more general. Because it is unlikely that the user of this manual will ever need to use 
these tests, they will not be described further. When using a computer software package, a p 
value is typically given. If the p value is low (i.e., typically less than 0.01 to 0.1), then the as-
sumption of normality is rejected.  
 
Section II 
Data Transformations 
 
F-7 Introduction.  Any mathematical function f(x) that is applied to every point in a data set, 
x, is called a transformation (e.g., Ln(x) is calculated for every data value x). For the transforma-
tion  
 
 y = f(x) 
 
the values of x are the original data values and the corresponding values y = f(x) are the trans-
formed data values. An inverse transformation is a function, f –1(x), which, when applied to all of 
the transformed data values, results in the original data values: 
 
 f –1(y) = f –1[f(x)] = x  . 
 
 F-7.1  For example, if y = Ln(x), then f -1(y) = exp(y) because exp[Ln(x)] = x.  
 
 F-7.2  Data transformations are frequently done to obtain normally distributed data sets. 
By transforming the data, assumptions that are not satisfied in the original data can be satisfied 
by the transformed data. For example, a right-skewed distribution can often be transformed to be 
approximately Gaussian (normal) by using a logarithmic transformation or square root transfor-
mation. After a data set is transformed, graphical methods and statistical tests verify that the 
transformed data set is normal. If a transformed data set is normal, then statistical tests that rely 
on normality are performed using the transformed data. However, finding a transformation that 
results in a normal data set may be difficult. The selection of a suitable transformation will be 
dependent upon the nature of the data set and is beyond the scope of this document. Some com-
monly used transformations will be discussed but only lognormal transformation will be dis-
cussed in any detail. 
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 F-7.3  A potential disadvantage of any transformation arises when it is necessary to inter-
pret the results of the statistical evaluation in terms of the untransformed data. For example, in 
general, if the mean of the transformed data set is calculated, then this quantity will not corre-
spond to the mean of the untransformed data set when an inverse transformation is performed. 
For example, as previously stated, if Y = Ln(X) is normally distributed with a population mean 
(μY) and population variance, σY

2, then the mean (μY) corresponds to the population median of X 
rather than to the population mean of X, μX. (Because Xp = 0.5 is the mean of X and Z0.5 = 0 in 
Equation E-12, the median of X is equal to exp(μ).)  
 
 F-7.4  If a transformation is performed, inverse transformations to the original data set 
should be avoided. Decisions should be based upon the statistical analyses of only the trans-
formed data. For example, assume that two different data sets are approximately normally dis-
tributed with similar variance after transformation. The objective is to determine whether the 
data sets are significantly different from one another (even though both data sets possess similar 
variances). The mean of the first transformed data set would be statistically compared to the 
mean of the second transformed data set. It would be inappropriate to perform inverse transfor-
mation for the two means (to express them in the original measurement units) prior to perform-
ing the comparison. 
 
 F-7.5  While transformations are useful for dealing with data that do not satisfy statistical 
assumptions, they can also be used for other purposes. Transformations are useful for consolidat-
ing data that may be spread out or that have several extreme values. In addition, transformations 
can be used to derive a linear relationship between two variables, so that linear regression analy-
sis can be applied. Transformations may also make the analysis of data easier by changing the 
scale into one that is more familiar or easier to analyze. 
 
F-8 Logarithmic.  A logarithmic transformation may be useful when the original measure-
ment data follow a lognormal distribution. Data may be lognormally distributed when the vari-
ance is proportional to the square of the mean (refer to Equation E-11) or, equivalently, when the 
coefficient of variation (ratio of standard deviation to mean) is constant over all possible data 
values:  
 
 CV = σX /μX = constant. 
 
 F-8.1  For example, if the variance of data collected around 50 ppm is approximately 250, 
but the variance of data collected around 100 ppm is approximately 1000, then a logarithmic 
transformation may be useful.  
 
 F-8.2  The logarithmic base (either natural or base 10) needs to be consistent throughout 
the analysis. However, it does not matter whether a natural (Ln) or base 10 (Log) transformation 
is used because the two transformations are related by a constant: 
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 Ln(X) = 2.303 Log(X).  
 
 F-8.3  The Log(x) or Ln(x) cannot be transformed when x = 0. This is usually not a prob-
lem for environmental applications because non-detects are not typically reported as zero but to 
some positive reporting (censoring) limit. If some of the original values are zero, it is customary 
to add a small quantity (ε) to make the data value non-zero, as the logarithm of zero does not ex-
ist. However, this introduces some error for the statistical evaluation. The size of ε depends on 
the magnitude of the non-zero data. It is recommended that the statistical evaluation be per-
formed using several values of ε to determine if it is sensitive to the choice of ε. An initial value 
of one-tenth of the smallest non-zero value is recommended.  
 
F-9 Square Root. 
 
 F-9.1  An overview rather than a detailed discussion of the square root transformation is 
presented here. The square root transformation may be used when the data values are small 
whole numbers, such as bacteriological counts, or the occurrence of rare events, such as viola-
tions of a standard over the course of a year. The underlying assumption is that the original data 
follow a Poisson-like distribution, in which case the mean and variance of the data are equal. Ac-
cording to EPA’s SW-846 methodology, if the mean and variance of a data set are equal, indicat-
ing data from a Poisson distribution, then the data can be transformed using a square root 
transformation so the data can achieve normality. 
 
 F-9.2  The square root transformation overcorrects when very small values and zeros ap-
pear in the original data. In these cases, 1+X  is often used as a transformation. The square root 
transformation may also be useful when developing control charts for intrawell comparisons 
when the assumption of normality is a concern. For further discussion on control charts, see Ap-
pendix K. 
 
F-10 Inverse Sine (Arcsine).  An overview rather than a detailed discussion of the inverse 
sine transformation is presented here. This transformation may be used for binomial proportions 
based on count data to achieve stability in variance. The resulting transformed data are expressed 
in radians (angular degrees). According to EPA’s SW-846 methodology, if the mean is less than 
the variance of a data set, indicating data from a negative binomial distribution, then data can be 
transformed using an arcsine transformation to achieve normality. Special tables must be used to 
transform the proportions into degrees. 
 
F-11 Box-Cox Transformations.  An overview rather than a detailed discussion of the Box-
Cox transformation is presented here. The Box-Cox transformation is a complex but useful trans-
formation that takes the original data and raises each data observation to the power γ. Box-Cox is 
typically used in regression modeling (a statistical methodology used to identify the best-fitting 
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equation for a set of data) and would be done using statistical software. Box-Cox is also per-
formed when a data set is not normal, but it is desirable to produce normally distributed trans-
formed data. A logarithmic transformation is a special case of the Box-Cox transformation. The 
Box-Cox family of transformations is defined as follows: 
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where γ  is a parameter that defines the transformation (Hahn and Meeker, 1991).  
 
 F-11.1  Note both the logarithmic transformation and the square root transformation are 
simply Box-Cox transformations with γ = 0 and γ  = 0.5, respectively. The parameter γ is gener-
ally unknown. The objective is to find a value of γ such that the transformed data are normally 
distributed and the variance is as constant as possible over all possible concentration values. In 
general, transformations with γ < 1 are applied to normalize positively skewed data, and trans-
formations with γ  > 1 are used to normalize negatively skewed data. The value of γ  required to 
normalize the data decreases (from 1) as the degree of positive skew increases. For example, a 
transformation with γ  = 0.5 might be applied for a distribution with a slight positive skew, and a 
value of γ  = 0 (a log transform) might be applied for a more positively skewed distribution. 
From Hahn and Meeker (1991): “One may try different values of γ (i.e., γ = 1, 0.5, 0.33, 0, and  
–1, corresponding to no transformation, square root, cube root, log, and reciprocal transforma-
tions, respectively) to try to find a value (or range of values) that gives a probability plot that is 
nearly linear. In some cases physical considerations or experience may suggest such a value.”  
 
 F-11.2  Analytical methods are also available, such as the maximum likelihood tech-
nique, to find the optimal γ. A statistical software package would be used to find the value of γ 
for the best transformation; that is, the value of γ  that produces the most normal data set once the 
transformation is applied. For example, if γ is nearly equal to zero (e.g., γ  = 0.03), then a loga-
rithmic transformation (γ = 0) would typically be selected and would produce a data set that is 
the most normally distributed relative to other Box-Cox transformations (such as a square root 
transformation). Statistical tests that require normality would subsequently be performed using 
the transformed data. However, as is true of any transformation, one of the disadvantages of 
Box-Cox is the difficulty in interpreting the transformed data in terms of the original measure-
ment units.  
 
Section III 
Recommendations 
 
F-12 General.  Analysts can perform tests for normality with samples as small as three; how-
ever, the tests lack statistical power owing to the small sample size. For small sample sizes, it is 



EM1110-1-4014 
15 Jan 07 
 

F-14 

recommended that a normal distribution not be assumed for the data and that a nonparametric 
statistical test, one that does not assume a distributional form of the data, be selected instead. 
Ideally, an adequate sample size to provide the necessary power for statistical tests will have 
been selected prior to data collection. 
 
 F-12.1  This document recommends using the Shapiro-Wilk W test wherever practical, 
along with a normal quantile plot and box-plot. The Shapiro-Wilk W test is one of most powerful 
tests for normality, and it is recommended in several EPA guidance documents as the preferred 
test when the sample size is less than 50. The Anderson-Darling statistic is also recommended 
(e.g., when available via statistical software). A normal quantile plot is helpful, no matter the 
sample size, to verify results from any test of normality. In practice, with the use of computers it 
may be possible to perform more than one fitness test, and determine which fit has the highest p 
value. 
 
 F-12.2  In general, with large sample sizes, both D’Agostino’s test and the Shapiro-Wilk 
test will be overly sensitive to small deviations from lognormality or normality and will result in 
an unknown distribution assignment more often than is appropriate. In these cases, close exami-
nation of probability plots and the application of professional judgment in determining the ap-
propriate distributional assumptions will be particularly important.  
 
 F-12.3  If the Shapiro-Wilk W test is not feasible, then using either Filliben’s statistic or 
the Studentized range test is reasonable. Filliben’s statistic performs similarly to the Shapiro-
Wilk test. The Studentized range is a simple test to use; however, it is not applicable for non-
symmetrical data with large tails. If the data are not highly skewed and the tails are not signifi-
cantly large (compared to a normal distribution), the Studentized range provides a simple and 
powerful test that can be calculated by hand. If critical values for these tests (for the specific 
sample size) are not available, then implementing either Geary’s test or the Lilliefors Kolmo-
gorov-Smirnoff test is reasonable. Geary’s test is easy to apply and uses standard normal tables 
similar to Table B-15 of Appendix B, and is widely available in standard textbooks. Lilliefors 
Kolmogorov-Smirnoff is more statistically powerful but is also more difficult to apply and uses 
specialized tables not readily available. 
 
 F-12.4  Statistical professional judgment based on normal probability plots and results of 
the statistical tests should be considered when identifying a data value’s distribution. If the statis-
tician’s professional judgment suggests a different distributional assumption than that determined 
by the statistical test or tests, the alternative distribution may be assumed as long as the statisti-
cian provides a defensible rationale for this decision.  
 
 F-12.5  It should be stressed the Shapiro-Wilk W test is a good test to use to evaluate 
whether a set of data has been drawn from a normal or lognormal distribution. However, this test 
will not have very much power to reject the null hypothesis of normality or lognormality if the 
sample size is small. 



EM 1110-1-4014 
15 Jan 07 

 

F-15 

 
 F-12.6  In conclusion, results from tests regarding the assumption of normality should 
always be reviewed graphically. 
 
F-13 Data Fitting Multiple Distributions.  When data are found to fit more than one distribu-
tion, there are a few things to consider in making a decision about which distribution would be 
most appropriate. One thing to consider is the p value. After running a test of distributional as-
sumptions (Shapiro-Wilk, chi-square, Kolmogorov-Smirnoff, etc.), it would be appropriate to 
use the distribution that had the higher p value. Consideration should be given to the sample size 
of the data; data containing just a few samples may not provide enough information about the 
true distribution.  
 
 F-13.1  Another thing to question is the purpose of identifying the data’s distribution. If it 
is to verify a distributional assumption for a statistical test and the data fit multiple distributions, 
it may be appropriate to perform the test using several statistical methods and evaluate results 
from each to see what can be learned. If a distributional assumption is needed to estimate a con-
fidence interval or upper confidence limit, then it may be appropriate to identify which distribu-
tion would provide the more conservative estimate.  
 
 F-13.2  It is often difficult to interpret the results of statistical tests conducted on trans-
formed data in terms of the original units to make these types of comparisons. If transformation 
produces only a slightly larger p value, it seems advisable not to perform the transformation.  For 
example, if data follow a normal and lognormal distribution, a lognormal UCL can be quite lar-
ger than the normal UCL estimate owing to the inherent nature of a lognormal distribution.  If 
the UCL should be used to evaluate risk at a site, a lognormal UCL would provide the more con-
servative estimate of risk. 
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APPENDIX G 
Detection Limits and Quantitation Limits 

 
G-1 Introduction. 
 
 G-1.1  Environmental statistical analysis is complicated by a practical constraint on labo-
ratory analysis—the technical impossibility of identifying zero concentrations. This means that it 
is physically impossible for a laboratory analysis to confirm the complete absence of the chemi-
cal or compound of interest. A chemical may be present at some unknown concentration below 
the low end of the concentration range that the analysis is able to detect. Therefore, for most sta-
tistical applications that evaluate site data, there is a need to substitute some number (a “cen-
sored” value) that represents the lowest concentration reasonably detected. This threshold or 
censoring limit is often termed a “detection,” “quantitation,” or “reporting” limit. However, this 
Appendix provides separate definitions for the terms “detection” and “quantitation limit” and 
does not use these terms interchangeably. 
 
 G-1.2  To determine which censoring limit should be used for statistical evaluations, it is 
necessary to understand how environmental laboratories define detection and quantitation limits, 
as these quantities are used to establish censoring limits. Unfortunately, the subject of detection 
and quantitation limits is often confused by the highly diverse, and often overlapping, definitions 
applied to these quantities. Furthermore, no standard approach to establishing censoring limits 
for environmental data exists. This Appendix describes some of the methods for establishing de-
tection limits and subsequent requirements for substituting values for non-detects in the data set. 
 
G-2 Detection Limits.  No instrumental method of chemical analysis is capable of “seeing” a 
value of zero. All measurement systems are subject to bias and variability. A fundamental con-
tributor to this is the presence of “noise” in the measurement process. Noise can have any num-
ber of sources. For example, if one examines the pictorial output from a gas chromatographic 
analysis (a chromatogram) of a control sample at the normal scale at which it is displayed in a 
commercial data package, one would observe a Gaussian peak that represents the analyte of in-
terest and what appears to be a straight, smooth line beyond the peak referred to as the “base-
line.” Figure G-1 depicts a cartoon example. However, that same graph examined at a higher 
level of magnification would reveal a very different picture of fluctuations across the same line 
(Figure G-1). Those fluctuations constitute noise and can result from such factors as vibration in 
the environment around the instrument, fluctuations in electrical current or voltage, the incidental 
presence of contaminants in the system, or even stray ionizing radiation from universal back-
ground. 
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Figure G-1.  Noise in GC baseline. 

 
 G-2.1  If a very small amount of a target analyte were placed in the measurement system, 
assuming that the instrument was functioning properly, the analyte would cause a response in the 
detector that would be translated into a small Gaussian type peak on the chromatogram. How-
ever, as the concentration is decreased, the size of the peak decreases until it is “lost” in the noise 
of the measurement system. Because the amount of noise in the system at any given moment is 
essentially random, the amount of analyte that can be hidden by the noise is variable but, on av-
erage, is always greater than zero. 
 
 G-2.2  As the term is typically used in the environmental testing industry, a ”detection 
limit” (DL) is the concentration that gives rise to an analyte peak or signal that is statistically 
greater than the surrounding baseline noise at a high level of confidence (typically the 99% level 
of confidence). The analyte cannot be confidently reported as present when the analyte concen-
tration is less than the DL. Concentrations greater than the DL are reported as “detected.” 
 
 G-2.3  However, theoretically, there are two types of “detection limits”: The “Type I DL” 
that minimizes false positives (Type I error) and the “Type II DL” that minimizes false negatives 
(Type II error). A false positive occurs when an analyte is absent, or the true concentration is less 
than the baseline noise but is erroneously reported as present. A false negative occurs when an 
analyte is erroneously reported as less than or equal to some concentration when it is actually 
present at a greater concentration. The two types of detection limits are illustrated in Figure G-2. 
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Type I DL0 Type II DL  
Figure G-2. “Type I DL” (LC) and “Type II DL” (LD). 

 
 G-2.4  The International Union of Pure and Applied Chemistry (IUPAC), an interna-
tional, non-governmental organization that supports the advancement of chemical science, refers 
to the “Type I DL” as the “critical value” and the “Type II DL” simply as the “detection limit.” 
Therefore, for simplicity and to conform with international nomenclature, the IUPAC terminol-
ogy is predominately used in this document. The critical value is the threshold of analyte or in-
strument signal attributable to the presence of analyte that is statistically different from zero or 
baseline noise at a high level of confidence. The 99% level of confidence is used for chemical 
analyses. When an analyte is reported at a concentration greater than the critical value the con-
clusion is as follows: The analyte is present at some concentration greater than zero at the 99% 
level of confidence. The “detection” of the analyte is reported. However, if the analyte concen-
tration reported from a measurement is less than the critical value, the analyte may or may not be 
present (the true analyte concentration may or may not be greater than zero). Under these cir-
cumstances, no conclusion regarding the presence or absence of the analyte is possible. The 
IUPAC detection limit is established to addresses “non-detections” of the analyte. 
 
 G-2.5  When a measurement is taken and the analyte is less than the critical value, the 
conclusion is that the analyte, if present, is present at some concentration less than the detection 
limit; the non-detection is reported as “less than the detection limit.” 
 
 G-2.6  Currie’s (1968) approach readily illustrates the nature of the critical value and de-
tection limit on a conceptual level. Currie defines the critical level, LC, as the concentration at 
which the binary decision of detection can be made with a specified level of confidence. The 
shaded area to the right of LC in Figure G-2 represents the Type I error (i.e., the probability of 
concluding the analyte is present when the true concentration is zero). Currie defines the limit of 
detection, LD, to provide an acceptable Type II error rate. The shaded area to the left of LC repre-
sents the Type II error (e.g., the probability of failing to detect the analyte when the true concen-
tration is LD). In order to calculate quantities LC and LD, the following simplifying assumptions 
are made: The concentrations are normality distributed, the standard deviation is known (or there 
is negligible uncertainty for the standard deviation), and the standard deviation is not a function 
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of concentration and the “true” (population mean) concentration is zero. For the 99% level of 
confidence: 
 
 LC = 2.33σ 
 
 LD = LC + 2.33σ = 2 LC 
 
 G-2.7  Unfortunately, it is common practice for environmental chemists to refer to the 
critical value as the “detection limit.” For example, the method detection limit (MDL), defined 
by 40 Code of Federal Regulations (CFR) Part 136 (Appendix B), is essentially a critical value 
(as defined by the IUPAC). There is no standard terminology for the IUPAC detection limit for 
environmental testing. The USACE refers to this as “method reporting limit” or “the reporting 
limit for non-detections.” 
 
 G-2.8  The fact that an analyte can be detected, a qualitative statement specifying the 
presence or absence of the analyte at some level of detection, does not necessarily imply that the 
analyte concentration can be precisely or accurately specified. The concentration at which quan-
titative statements can be made reliably is called the “quantitation limit.” However, there is no 
standard terminology for this quantity in the environmental testing industry. It could be referred 
to as a “report limit” or erroneously referred to as “detection limit.” Terms such as “practical 
quantitation limit” or “contract required quantitation limit” could be used. Furthermore, as used 
by environmental testing laboratories, these terms may, but not would necessarily, refer to the 
“quantitation limit” as it is defined in this document. 
 
 G-2.9  There is a host of terminologies applied to detection and reporting limits depend-
ing on the source and the details of the definition. Some more commonly employed terms are 
listed and cross-referenced in Table G-1. The relationships (cross references) for the various 
definitions are approximate in nature. 
 
G-3 Alternative Approach to Calculate the Critical Value and Detection Limit.  Although 
the Currie approach is conceptually viable, there is a major practical problem with the approach. 
Currie did not propose a practical experimental design to calculate LC, but expressed LC in terms 
of the population standard σ (which is usually unknown), rather than the sample standard devia-
tion, s. (In other words, LC = 2.33σ only when the distribution is normal and σ is known.) Simi-
larly, LD cannot be calculated using σ if this quantity were unknown. However, for a normal 
distribution, LC can be defined as an upper tolerance limit for a population mean μ = 0 and can 
be calculated from s using an equation of the form (Georgian and Osborn, 2003):  
 
 sKL npC 1,1, −−= α  
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Table G-1 
Common Detection and Quantitation Limit Terminology 

Term EPA Definition USACE Analogue IUPAC Analogue 
Instrument 
Detection 
Limit (IDL) 

Concentration that can be distinguished 
from instrument noise with 99% confi-
dence that the response is not a false posi-
tive based on analysis of seven replicates 
of a standard. 

None Critical value (for 
determinative por-
tion of method) 

Method De-
tection Limit 
(MDL) 

Concentration that can be distinguished 
from background with 99% confidence 
that the response is not a false positive 
based on analysis of seven replicates of 
fully processed blank spikes. (Defined in 
40 CFR, Part 136, Appendix B.) 

MDL Critical Value (for 
determinative and 
preparatory portion 
of the method) 

Sample 
Quantitation 
Limit (SQL) 

The MDL modified on a sample-specific 
basis for such factors as dry weight or di-
lution. 

 Critical Value (ad-
justed for sample-
specific factors)  

Estimated 
Quantitation 
Limit (EQL) 

The MDL multiplied by a factor between 
3 and 5. 

Method Quantitation Limit 
(MQL)—The MQL is at 
least 3 times the MDL, ½ 
Action Level, and lies on 
the initial calibration curve.  

Quantitation Limit 

Practical 
Quantitation 
Limit (PQL) 

The EQL “smoothed” to round numbers. Method Quantitation Limit. Quantitation Limit 

Method 
Reporting 
Limit (MRL) 

None Censoring limit for the re-
porting on non-detects. De-
termined from project 
objectives. Commonly set 
from the Type II DL to the 
MQL. 

Detection Limit 

 
The standard deviation s is calculated from a set of n replicate samples (e.g., a clean matrix such 
as reagent water spiked with the analyte of interest) that are processed through the entire analyti-
cal method. The factor Kp,1–α,n–1, which depends upon the coverage probability (p), level of con-
fidence (1 – α) and number of samples (n), can be calculated from Tables B-2 and B-15 using 
the following equation:  
 
 ]/)1[( 2

,11,1, αα χ −−− −= npnp nZK  . 
 
For example, if 1 – α = 0.95 (i.e., α = 0.05), p = 0.99 and n = 7, then from Table B-2,  
 
 635.12

05.0,6
2

,1 ==− χχ αn  
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and, from Table B-15, Zp = Z0.99 = 2.33. Therefore, 
 

46.4]635.1/)17[(33.26,95.0,99.0 =−=K  . 
 
If a large number of blank samples are analyzed, with 95% confidence, at least 99% of all the 
measurements will be less than LC = 4.46 s. The above equation, however, assumes normality 
and constant variance. A conservative approximation for LD would consist of initially calculating 
LC using the equation above then setting LD equal to two times LC. 
 
G-4 EPA Method Detection Limit and Other Detection Limits.  There are two major DL 
estimators: those based on a “single concentration design” and “calibration designs.” The major 
disadvantage of single concentration designs is they assume that variability at a given concentra-
tion is constant (i.e., the variability near the DL is similar to that at higher concentrations). Typi-
cally, for a single concentration design, a set of replicate samples containing the analyte of 
interest at a fixed, known concentration are processed to calculate the critical value. Therefore, 
the critical value is determined at the single concentration for the replicate study and it is as-
sumed that a higher or lower concentration would produce substantively the same value. The 
MDL is based upon a single concentration design. In calibration designs, the critical value is cal-
culated using multiple concentrations over the range of the critical value. The multiple concen-
tration levels provide a means to model the variance (e.g., or standard deviation) as a function of 
concentration. In this way, the resulting critical value estimate is not simply a function of sample 
spike concentration. However, single concentration designs are advantageous relative to multi-
concentration designs because they are much simpler and less costly to perform. The critical 
value can be defined in many different ways; however, only the most commonly accepted 
method, the EPA MDL procedure, is discussed in detail. 
 
 G-4.1  EPA Method (Single Concentration Design).  Historically, EPA has used single 
concentration designs, even though single concentration designs and their associated DL estima-
tors are rarely completely justified. The MDL (defined by 40 CFR) is a single concentration de-
sign for the critical value that most environmental testing laboratories use. 
 
 G-4.1.1  The EPA defines an “instrument detection limit” (IDL) as an experimentally de-
rived quantity arrived at by repeatedly injecting a small but visible amount of a pure analytical 
standard into the instrument, measuring the variability in the quantitative results, and calculating 
the IDL assuming 99% confidence that the observed response is not a false positive. The IDL is 
generally only performed for inorganic metals analyses. The IDL is typically calculated in the 
same manner as the MDL, using a Student’s t-statistic. The two quantities differ predominately 
in the way the samples are processed. The IDL is determined via the direct instrumental analysis 
of standards containing the analyte of interest. However, when environmental samples are ana-
lyzed, they generally are not directly injected into instruments but are subject to a variety of prior 
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preparatory processes (such as extractions, derivatizaton, solvent exchanges, cleanup, and dilu-
tions). Each step in the processing adds additional noise or uncertainty to the measurement sys-
tem, which the IDL calculation does not take into account. Therefore, IDLs tend to be smaller in 
concentration than the corresponding MDLs when samples are subjected to an extensive prepara-
tory process prior to analysis. The minimum quantity of practical importance in environmental 
analysis is that amount that can be reliably distinguished from the sum of all the various sources 
of noise involved in the analytical method, the method detection limit (MDL). Thus, environ-
mental laboratories typically use the MDL to characterize detection capability. 
 
 G-4.1.2  Although the MDL (as defined in 40 CFR) strictly applies to water matrices, it is 
applied to a broad range of analytical methods, including those for solid samples. This single 
concentration design requires a complete, specific, and well-defined analytical method. It is es-
sential for all sample-processing steps of the analytical method to be included in the determina-
tion of the method detection limit. MDLs depend upon the sample preparatory procedures and 
the specific laboratory instrument used.  
 
 G-4.1.3  The EPA procedure used to estimate the detection limit is summarized below. 
 
 G-4.1.3.1  Prepare a homogeneous matrix that is free of analyte (e.g., reagent water or 
clean sand). 
 
 G-4.1.3.2  Prepare each sample mixture at a concentration of at least equal to or in the 
same concentration range as the estimated MDL in the matrix of interest. 
 
 G-4.1.3.3  Prepare a minimum of seven aliquots of the sample to be used to calculate the 
MDL and process each replicate through the entire extraction/digestion and analytical method. 
 
 G-4.1.3.4  Calculate the variance (s2) and standard deviation (s) of the replicate meas-
urements. 
 
 G-4.1.3.5  Calculate the MDL, using the formula: MDL = t0.99.ν s, where t1-α.ν is the Stu-
dent’s t value appropriate for the 99% confidence level with ν = n –1 “degrees of freedom”; and 
the number of measurements, n ≥ 7. (The appropriate value of Student’s t is typically found in a 
statistical table, and is equal to about 3.14 for n = 7 for the 99% level of confidence).  
 
 G-4.1.3.6  Review results to verify the reasonableness of the calculated DL. 

 
 G-4.1.4  The use of the MDL for decision-making (e.g., determining environmental im-
pacts) has recently triggered intense scrutiny of the viability of the MDL for measuring detection 
capability. The following is a partial list of potentially flawed assumptions or problems associ-
ated with the MDL as defined in 40 CFR. 
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 G-4.1.4.1  The MDL addresses false positives (i.e., Type I error), but does not address 
false negatives (Type II error); for example, a non-detection cannot be confidently reported as “< 
MDL.” (However, it should be noted that there is controversy regarding the interpretation of the 
MDL in terms of the IUPAC definitions of the critical value and detection limit; some individu-
als have argued that the MDL is actually an IUPAC detection limit.)  
 
 G-4.1.4.2  The MDL underestimates method variability as it is typically calculated using 
a small number of replicates within a short period of time and has been interpreted to be a pre-
diction limit for the next single future observation, minimizing false positives at the 99% level of 
confidence for only one future environmental sample (and not a set of multiple samples) when 
the analyte is absent (though it should be noted that the interpretation of the MDL as a prediction 
limit is also controversial). 
 
 G-4.1.4.3  The standard deviation is assumed to be constant (i.e., not a function of con-
centration).  
 
 G-4.1.4.4  Normality is assumed. 
 
 G-4.1.4.5  No analytical bias is implicitly assumed (e.g., no analyte loss, average analyte 
“recoveries” of 100%). (The MDL accounts for analytical method variation in the form of ran-
dom “precision error.”) 
 
 G-4.1.4.6  The matrix used to perform the MDL study (e.g., reagent water) is assumed to 
be equivalent (with respect to all physical or chemical properties that would affect detection ca-
pability) to the actual environmental matrices that will be tested (e.g., waste water and ground-
water).  
 
 G-4.1.5  In general, one or more of the assumptions discussed above are routinely 
violated to some extent for environmental testing. MDLs are statistically derived quantities and 
are only estimates of the actual detection limit (critical value). For example, based on purely sta-
tistical considerations, MDLs are uncertain by a factor of approximately two. Furthermore, be-
cause MDLs are typically generated by processing clean material (such as purified water or sand) 
rather than actual environmental samples, they represent “best case” detection capability. In gen-
eral, the material analyzed to calculate the MDLs is not representative of the chemical and physi-
cal composition of the environmental samples. Detection limits calculated using an actual 
environmental matrix could be higher than the MDL by an order of magnitude. However, be-
cause of these factors, environmental laboratories often report “detection limits” several times 
greater than MDLs (although there is no uniform standard for how this is done). The detection 
limits proposed in Paragraph G-3 overcome the first two shortcomings of the MDL discussed 
above. 
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 G-4.1.6  Lastly, when detection limits such as the MDL are constructed from prediction 
limits (using either a single concentration or calibration design), in order to minimize false posi-
tives at the specified level of confidence, a new detection limit must (in theory) be calculated 
(from a new study) prior to each new sample being analyzed. However, this is not done in prac-
tice. Detection decisions for an enormous number of test samples are calculated based on the re-
sults obtained from a single MDL study. This results in a much greater frequency of false 
positives than 1%. To ensure that false positives are minimized for a large unspecified number of 
future measurements, detection limits may be constructed from tolerance intervals so that a large 
proportion of future measurements, p, will be less than the upper tolerance limit (UTL) with a 
high level of confidence when the “true” concentration is zero. For the critical value, an UTL for 
p100% coverage (e.g., where p = 0.99) at the (1 – α)100% (e.g., 99%) level of confidence could 
be constructed for a “true” concentration of zero (e.g., refer to Paragraph G-3). 
 
 G-4.2  Calibration Designs.  In one type of calibration design, a series of samples are 
spiked at different known concentrations in the range of the hypothesized critical value, and 
variability is determined by examining the deviations of the actual response signals from a fitted 
regression line (instrument response versus concentration). In this design, it is typically assumed 
that the distribution of the deviations from the fitted regression line is normal with constant vari-
ance across the range of concentrations used for the study. The relationship between response 
signal (Y) and spiking concentration (X) in the region of the critical value is assumed to be a lin-
ear function of the form: 
 
 εββ ++= XY 10  
 
where the (population) “residual” )( 10 XY ββε +−=  is the deviation of the measured value of 
Y from the “true” regression line X10 ββ + . It is assumed that the distribution of values for ε is 
normal with mean μ = 0 and some constant variance. A set of n measurements (xi, yi) would be 
used to estimate a line of the form XbbY 10 += , where the sample slope, b1, estimates the 
population parameter β1 and the sample intercept, b0, estimates the population parameter β0. The 
regression model is used to calculate the critical value and detection limit by constructing either 
prediction or tolerance limits for the regression line, XbbY 10 += . (The specific mathematical 
formulas used are beyond the scope of this document.) 
 
 G-4.2.1  Hubaux and Vos method calibration design is an example of an approach in 
which statistical prediction limits are used to calculate DLs. The critical, LC, value is calculated 
from a 99% prediction interval for the linear regression model. A single future measurement will 
be less than LC at the 99% level of confidence when the “true” concentration is zero. The limit of 
detection, LD, is then defined as the smallest concentration at which there is 99% confidence a 
value greater than LC will be obtained. This method assumes that the variability is constant 
throughout the range of concentrations used in the calibration design (e.g., if this assumption is 
violated, a variance stabilizing transformation might be applied and the assumption of constant 
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variance may be reevaluated). The critical value obtained from the Hubaux and Vos design can 
be viewed as a multi-design concentration version of the single concentration-designed MDL 
(e.g., since the MDL is also a prediction limit, minimizing false positives for only one single fu-
ture observation). Regression models used for multi-concentration designs can also be used to 
define detection limits based on prediction and tolerance intervals. A tolerance or prediction in-
terval can be constructed for each possible value of the independent variable X. 
 
 G-4.2.2  As previously stated, the Hubaux and Vos calibration design assumes that the 
variance is homogeneous (constant) throughout the range of calibration function. This assump-
tion is rarely completely justifiable. In practice, variation in the response signal is often propor-
tional to the concentration. For example, if violations of this assumption are ignored, the 
variability at low levels can be overestimated and, as a result, detection limits can be overesti-
mated. However, some calibration designs account for non-constant variance. For example, the 
detection limits for non-constant variance calibration designs can be calculated using a technique 
called weighted least squares (WLS). The WLS calibration design is similar to the Hubaux and 
Vos design, but the underlying regression model would assume, for example, that variance is 
proportional to concentration (Gibbons and Coleman, 2001).  
 
G-5 Quantitation Limits.  The ability to distinguish between the presence or absence of an 
individual analyte, particularly in a complex mixture such as an environmental sample, does not 
imply the ability to accurately and precisely measure the quantity of analyte present in the mix-
ture. Imagine, for example, a peak partially hidden in the noise of an instrument. If the quantity 
of analyte is measured as proportional to the height or area of the response, as is the usual case in 
environmental analysis, from what point is it measured? Where is the baseline? Should it be 
measured from the lowest point in the noise, the average noise level, or the top of the noise? In 
other words, because the baseline is constantly shifting, what portion of the observed peak is 
noise and what portion is response? The magnitude of the response ascribable to the analyte 
(e.g., peak area) cannot be known with a high degree of certainty (high accuracy and precision); 
therefore, the measured value must, by definition, be equally suspect. There is a point at which 
the measured value is so much larger than any possible contribution from measurement noise 
that the noise becomes negligible relative to the analyte result. That point is the quantitation limit 
(QL). 
 
 G-5.1  In EPA terminology, the QL is, by definition, a value sufficiently removed from 
the detection limit to ensure that quantitative statements made at that value meet defined degrees 
of precision and accuracy by most laboratories under most analytical conditions. Because the 
definition is vague, the QL is also vague. In fact, most practical applications of this concept are 
altogether arbitrary. For example, in EPA SW-846, the EQL for a given analysis is defined as 5 
to 10 times the MDL. However, the multiplication factor is somewhat arbitrary (e.g., various 
definitions of the QL for various programs have required the MDL to be multiplied by factors 
ranging from 2 to 10). Some justification for the use of a factor of 5 to 10 is as follows: If the 
MDL is assumed to be roughly equal to the magnitude of the uncertainty from analytical noise, 
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the relative error should be 20 to 10% at 5 and 10 times the MDL, respectively. However, it 
should be noted that this assumes that analytical bias is negligible and the standard deviation 
(used to calculate the MDL) is not a function of concentration and possesses negligible uncer-
tainty. In general, these are not valid assumptions. In particular, the standard deviation is typi-
cally an increasing function of concentration and can vary by a factor of about two when it is 
calculated at a fixed concentration using only seven replicates (as in 40 CFR). Setting the QL at a 
concentration at least 5 or 10 times the MDL is stated only as guidance (e.g., since the uncer-
tainty at these levels may still be relatively large).  
 
 G-5.2  To ensure acceptable precision and accuracy at any arbitrarily defined QL, quality 
control samples spiked at the QL could be included in the analytical sequence to actually meas-
ure the precision and accuracy of the measurement process (e.g., using control charts). Thus, this 
approach would quantify the uncertainty at the QL for “clean matrices.” Unfortunately, environ-
mental testing laboratories do not routinely analyze quality control samples at the QL, but at 
much higher concentrations (e.g., this would have to be requested when analytical services are 
contracted). In addition, the quantitation limit should fall within the calibration range of the ana-
lytical method. Instrumental response is typically unknown at concentrations less than the lowest 
initial calibration standard. Environmental testing laboratories usually (but do not necessarily) 
include the reported QL concentration as the low point of the initial calibration curve.  
 
 G-5.3  The “Practical Quantitation Limit” (PQL) is defined as the lowest limit of quanti-
tation achievable by laboratories within specified limits on precision and accuracy during routine 
laboratory operating conditions. Unfortunately, acceptance limits for precision and accuracy at 
the PQL are seldom defined. In practice, the PQL is typically established by multiplying the 
MDL (as derived from 40 CFR Part 136 instructions) by a factor of three to five (from EPA SW-
846, Chapter 1). The result obtained is the EQL. The EQL, being a multiple of the statistically 
derived MDL, will be different for each analyte tested. In the commercial laboratory community, 
PQLs are frequently set at the low point of the curve and are relatively uniform for methods 
where multiple analytes are simultaneously determined. The values thus obtained are variously 
referred to as PQLs, Reporting Limits (RLs), Less Than (< or LT), Non-Detects (NDs), or “U”- 
values. 
 
 G-5.4  The nomenclature that has been historically used by the USACE is defined in EM 
200-1-3. The MDL is developed according to the EPA model. The method quantitation limit 
(MQL) is required to be at least three times greater than the MDL and must fall within the initial 
calibration range and recommends that the MQL concentration not exceed one half the project-
specified action level (decision limit). The MRL, which is established as illustrated in Figure G-
3, depends on the end use of the data. The MRL is equal to the MDL for data to be used in sup-
port of risk-based decisions. Although this is consistent with current EPA guidance, it should be 
noted that false negatives (Type II error) cannot be adequately controlled at the MDL. The lower 
reporting limit for non-risk-based data is the concentration of the MDL check sample, which 
provides a higher level of confidence for non-detections. The MDL check sample is a spike 
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processed through the entire analytical method that is sufficiently large to consistently results in 
a detected value. 
 
For Non-Risk-Based Decision Making        
           
  Range of MRL     

MDL   MQL       
Action 
Level 

                
                      
                
 MDL Check    1/2 Action Level    
           
           
For Risk-Based Decision Making        
           
 Range of MRL     

  
MDL  MQL      

Action 
Level 

                
                      
                
 MDL Check    1/2 Action Level    

 
Figure G-3. USACE definition of the method reporting limit. 
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APPENDIX H 
Censored Data 

 
H-1 Introduction.  Laboratories report analytical data in two ways, as censored or uncen-
sored. An environmental testing laboratory reports a result as “non-detected” or “ND” when the 
result is below some numerical reporting threshold. The non-detect is typically reported as “< X” 
(e.g., or “X U”) where X is some numerical value. This is called a “censored result,” and the 
value of X is called the “censoring limit.” Results reported as “detected” are “uncensored” re-
sults. Typically, uncensored results are numerical values in concentration units that are greater 
than either the critical value or the censoring limit. Unfortunately, different environmental labo-
ratories use different types of censoring limits and reporting conventions. There is no standard 
industry practice regarding how to establish the censoring limit for non-detections. To exacerbate 
matters, as discussed previously, there is no standard terminology for the censoring limit. Report-
ing conventions differ from laboratory to laboratory. Some laboratories refer to the censoring 
limit as the DL, while other laboratories refer to this value as the “reporting limit” (RL). 
 
 H-1.1  Before evaluating censored data, it is important to understand the nature of the 
censoring limit being used, that is, to understand how it is being defined for a particular set of 
data. To confidently report a non-detect at the censoring limit, the censoring limit must be equal 
to or greater than the detection limit (as this quantity is defined by the IUPAC); ideally, non-
detects should be reported as “< DL” (larger values are undesirable for statistical evaluations and 
smaller values are undesirable for the minimization of minimize false negatives). For normally 
distributed data, in general, the censoring limit should be at least two times greater than the re-
ported critical value. However, it is not uncommon for laboratories to report non-detects to val-
ues as low as the MDL (where false negatives cannot be reliably reported). The censoring limit is 
often the laboratory’s practical quantitation limit (PQL), which may also be simply called the 
QL. Under these circumstances, a laboratory reports numerical results greater than the QL as 
quantitatively reliable values. A result less than the QL may be reported as detection, consisting 
of a numerical value with a “data qualifier” or “flag” if the result is greater than the critical value 
(e.g., the method detection limit), or the result may be reported as a non-detect as “< QL.”  For 
example, if QL = 10 ppm, MDL = 1 ppm, and a result of 5 ppm is measured, the laboratory may 
report the result as either “5 J” or as “< 10.” The reporting of the result as “5 J” indicates that the 
analyte is present, but the concentration of 5 ppm is a highly estimated value (i.e., is not quantita-
tively reliable). If the result were reported as “< 10,” the result would be a censored value (indi-
cating the concentration of analyte is no greater than 10 ppm). The J-qualifier is typically applied 
when the analyte is believed to be present at some concentration less than the QL. (Detection, 
quantitation, and RLs are discussed in detail in Appendix G.) 
 
 H-1.2  When measurement data are reported as “ND,” the exact concentration of the 
chemical is unknown, but lies somewhere between zero and the censoring limit. No quantitative 
information is available for a non-detect (except that the result is less than the censoring limit) 
because no estimate is provided to quantify how much smaller the result is than the censoring 
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limit. Although useful for data reporting and presentation, censored data complicate statistical 
analyses and data interpretation. Qualitative results cannot be used because statistical calcula-
tions require numerical values rather than attributes. For example, the inequality “< 10 ppm” 
cannot be substituted into the equation to calculate the sample mean although a value of 5 could 
be substituted for a result reported as “5 J.”  
 
 H-1.3  Statistical literature, Federal standards, and USEPA guidance advocate the use of 
uncensored measured concentrations for statistical calculations. Uncensored data give rise to 
more accurate estimates of mean and standard error than censored data, which result in more ac-
curate data interpretation and more reliable conclusions. However, under these circumstances, 
numerical values (even negative values) would be reported for each sample regardless of the 
magnitude of the concentrations relative to the DLs. Unfortunately, in practice, censored data are 
typically reported for environmental applications because uncensored data are often unavailable 
or difficult to obtain, especially for prior sampling events (e.g., some laboratory instruments are 
incapable of reporting uncensored values). Requesting uncensored data may also increase ana-
lytical laboratory costs because uncensored data are not routinely reported, but it can be done at a 
reasonable cost for select analytical methods (e.g., typically, for metal analyses). 
 
 H-1.4  As censored data are commonly reported for environmental testing, the next Para-
graph presents a variety of strategies for treating censored data. Some are recommended, while 
others should be used with greater caution. Gilbert (1987) and Gibbons (1994) contain more in-
formation on dealing with censored data. 
 
H-2 Overview of Strategies for Treating Censored Data.  There are several possible ap-
proaches for treating censored data. Four general strategies are listed below and then described in 
more detail:  
 

• The censored values can be ignored (omitted from the statistical calculations).  
 
• Proxy values (e.g., the censoring limit, one-half the censoring limit, or zero) can be sub-

stituted for the NDs to obtain numerical values for computations (e.g., for the mean and 
variance).  

 
• Statistical quantities such as the mean and variance can be adjusted based upon the pro-

portion of NDs by making certain distribution assumptions.  
 
• Nonparametric methods can be used. 

 
No single approach can be used for all data sets and all data quality objectives. The characteris-
tics of the data set and its end use must be taken into account when selecting the most appropri-
ate approach. 



EM 1110-1-4014 
15 Jan 07 

 

H-3 

 
 H-2.1  Approach 1.  The first approach, omitting the NDs from the data set, is typically 
undesirable as it decreases the total number of data points and the reliability of the statistical 
evaluations. In addition, the NDs often provide valuable information about the environmental 
population of interest. For example, a set of NDs that are all less than some risk-based decision 
limit provides valuable information about the site. This approach is potentially viable only under 
select circumstances and for select data quality objectives. For example, if there are a large num-
ber of samples for a study area, the censoring limit is small relative to some risk-based decision 
limit to which monitoring is being performed. In this case, if a statistical evaluation using only 
the set of detections were to indicate that contamination is present at concentrations significantly 
less than the decision limit, then the omission of the NDs would probably not affect decision-
making. 
 
 H-2.2  Approach 2. 
 
 H-2.2.1  The second approach is called the “substitution method.” Proxy or surrogate 
values are assigned to all the NDs. One approach for assigning proxy values is to assume that 
any value between zero and the censoring limit is equally probable and substitute one-half the 
censoring limit (midpoint of the range of possible values) for each ND. Other common proxy 
values are zero or the censoring limit itself. However, assigning proxies requires assumptions 
about the distribution of NDs. For example, assuming that all values less than the censoring limit 
are equally likely is equivalent to assuming a uniform probability distribution for all possible 
measurements between zero and the censoring limit. Assuming that all non-detects are equal to a 
fixed proxy value can bias the estimated standard deviation for the data set, particularly when a 
substantial number of results are NDs (see ASTM D-4210-89 for further discussion of this 
topic). For example, substituting the censoring limit could result in a sample mean that is biased 
high, and substituting zero could result in a mean that is biased low. Substituting one half the 
censoring limit may not bias the mean, but often adversely affects the estimate of the standard 
deviation. Biasing such summary statistics may result in erroneous conclusions about project ob-
jectives. In general, it is undesirable to assign proxy values when a significant portion of the data 
set (e.g., more than 15%) contains censored values. 
 
 H-2.2.2  As noted previously, laboratories often report uncensored data below the censor-
ing limit as estimated positive detections (commonly indicated as J-flagged values). Using these 
uncensored data for statistical computations (not necessarily for data reporting) prevents the need 
to assign proxy concentrations based on arbitrary algorithms (EPA 9285.7-09A, Gilbert, 1987). 
While measurements below the censoring limit may not indicate the presence of target analytes 
as reliably as measurements above the limit, in many cases uncensored measurements are still 
better estimates of contaminant concentration than any proxy that might be applied. Generally, 
this approach allows data users and decision-makers to better characterize site conditions. Cen-
sored data are always relevant for determining the presence or absence of a contaminant at a site, 
as long as appropriate qualitative identification criteria have been satisfied. 
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 H-2.3  Approach 3.  The third approach entails adjusting the average and standard devia-
tion instead of estimating proxy values for each ND result. However, to do this, it is also neces-
sary to make assumptions about the data distributions (such as, all NDs vary in a manner similar 
to results above the censoring limit—maximum likelihood estimation procedure and the prob-
ability plotting method—or Cohen’s method, which assumes a normal distribution). Adjustment 
methods provide accurate results only when the distribution assumptions are valid; otherwise, 
elevated estimates of the average and standard error could result. Usually, adjustment methods 
should be used when 15 to 50% of the values of the data results are censored. 
 
 H-2.4  Approach 4.  A nonparametric approach should be considered when a significant 
portion of the data set consists of censored values. This approach typically involves ordering the 
data values (from smallest to largest) and replacing the data values with the corresponding rank 
number. The NDs are then treated as tied ranks and would be replaced by some common mid-
rank value. Though not generally recommended, according to EPA guidance, if the DLs are not 
the same, then the NDs, instead of being treated as tied values, would be ranked according to 
their numerical estimates (EPA 68-W0-0025). The advantage of a non-parametric approach over 
the strategy of assigning proxy values is that no distribution assumptions are made. However, a 
larger number of data points are required for nonparametric methods to achieve the same level of 
confidence as parametric methods. Furthermore, though non-parametric methods can tolerate a 
greater proportion of NDs than parametric methods, non-parametric methods will not be viable if 
there are many NDs. For example, the median (refer to Appendix D) could not be determined 
from a data set that consists of more than 50% NDs. 
 
 H-2.5  Complicating Factors.  For most projects, uniform numerical censoring limits will 
be available; however, there are instances when this is not the case. A laboratory can provide 
sample-specific detection limits or critical values (i.e., limit adjusted by the sample-specific dilu-
tion factor, soil moisture, or other analytical adjustments) that vary from sample to sample. In 
this case, use the sample-specific limits to establish the proxy values. As there is no standard 
nomenclature or well-established conventions for generating censoring limits in the environ-
mental testing industry, it is recommended that the project chemist be consulted to establish the 
nature of the censoring limits being reported. 
 
 H-2.5.1  Censored results are sometimes reported as “ND” without the associated censor-
ing limit. When censoring limits are not provided with data, this information can usually be ob-
tained by contacting the laboratory if the analyses are current. If this information is not available, 
it might be viable to estimate a censoring limit based upon the lowest reported concentration, 
such as the lowest J-flagged result. Because J-flagged results are, by definition, concentrations 
that exceed the critical value, the minimum result represents a value that is closest to the critical 
value. A chemist should be consulted to examine the J-flagged values to determine if there are 
anomalous values that would set proxies at inappropriate levels. For example, an examination of 
the J-flagged results may indicate that there may be, in effect, two different censoring levels—
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one for “dirty” samples and one for “clean” samples. The project chemist might want to consider 
the issues of aliquot sizes and dilution conformity, among others factors, prior to making a final 
recommendation. 
 
 H-2.5.2  When using a nonparametric method to address NDs, ranking the data is often 
problematic when there are multiple censoring limits. For example, in general, it cannot be con-
cluded that “< 10” represents a value that is greater than “< 1.” The most appropriate approach 
for addressing multiple censoring limits depends upon the nature of the parametric test being 
used. One approach consists of setting all of the non-detects to the largest censoring limit and 
treating these as tied values. Detected values less than the largest censoring limit (i.e., detection 
limit) must also be censored to the highest detection limit and treated as ties. This approach is not 
optimal because information is lost when all of the results are censored to the highest detection 
limit. However, the approach is statistically valid, simple to implement, and could be adequate 
for a large data set. It should also be noted that, rather than treating the NDs as ties, it is a 
common practice to rank the NDs according to their numerical estimates (EPA 68-W0-0025). 
Although this approach is used in this document (to be consistent with EPA guidance), it is not 
necessary appropriate. 
 
 H-2.6  Overview Summary.  Some general guidelines are presented in Table H-1 based on 
the percentage of NDs. Substitution methods are recommended when less than 15% of the data 
are NDs. Adjustment or nonparametric methods should be considered when more than 15% of 
the results are censored. If more than 50% of the data set’s concentrations are NDs, it is recom-
mended that nonparametric methods be used instead of adjustment methods. 
 
Table H-1 
Guidelines for Analyzing Data with NDs 

Percentage of 
NDs 

Para-
graph Proxy Definition/Statistical Analysis Method 

< 15 H-3 Replace NDs with one-half censoring limit or a very small number 
15–50 H-4 Trimmed mean, Cohen’s or Atchison’s adjustment, Winsorized mean, and stan-

dard deviation or non-parametric methods 
> 50 – 90 H-5 Use tests for proportions 

> 90 H-6 Use tests based on Poisson distribution 

 
 H-2.6.1  OSWER 9285.7-41/EPA 540-R-01-003 recommends a substitution method for 
censored results that is not recommended herein. The EPA suggests that a proxy value for NDs, 
based on one-half the censoring limit or on a random value between zero and the censoring limit, 
be used. According to the document, the censoring limit should be equal to the “sample-specific 
quantitation limit” and the method may be used so long as fewer than 50% of the data set’s con-
centrations are NDs. However, as per Table H-1, it is recommended that proxy values not be 
used when more than 15% of the results are reported as NDs. Using proxy values can bias the 
results of the statistical evaluations. The data user should verify that the “sample-specific quanti-
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tation limit” (SQL) is an appropriate censoring limit and adequately addresses false negatives as 
discussed in Appendix G. False negatives will not be minimized at the SQL when this limit is es-
sentially a sample-specific MDL. 
 
 H-2.6.2  Although guidelines in Table H-1 are usually adequate, they should be imple-
mented cautiously. Professional judgment is critical. In particular, the use of proxy values for a 
substitution approach should be evaluated in terms of the data quality objectives of the project. If 
the censoring limits are greater than or near project decision levels, then this approach may not 
be appropriate. 
 
 H-2.6.3  In Table H-1, all of the suggested procedures for analyzing data with NDs de-
pend on the percentage of data below the censoring limit. For relatively small amounts below the 
censoring limit, replacing the NDs with a small number and proceeding with the usual analysis 
may be satisfactory. For moderate amounts of data below the censoring limit, a more detailed ad-
justment is appropriate. In situations where relatively large amounts of data below the censoring 
limit exist, one may need only to consider whether a certain proportion of the samples display 
values greater than some threshold values. The interpretation of small, moderate, and large 
amounts of data below the censoring limit is subjective. Table H-1 provides guideline percent-
ages to assist the user in evaluating their particular situation; however, it should be recognized 
that these percentages are not rigid rules, but should be based on judgment. 
 
 H-2.6.4  In addition to the percentage of samples below the censoring limit, sample size 
influences which procedures should be used to evaluate the data. For example, the case where 
the result for 1 sample out of 4 is not detected should be treated differently from the case where 
the results for 25 samples out of 100 are not detected. It is recommended that the data analyst 
consult a statistician for the most appropriate way to evaluate data containing values below the 
detection level. 
 
 H-2.6.5  The remaining portion of this Appendix describes in detail the various methods 
outlined above. Case studies and examples are also presented. 
 
H-3 Substitution Methods for Less than 15% NDs.  If small proportions, 15% or fewer, of 
the observations are NDs, these may be replaced with a small number, the DL, DL/2, or a ran-
dom value between the DL and zero (see EPA 540-R-01-003). After the non-detected values 
have been given a proxy value, then the usual statistical analysis may be performed. If simple 
substitution of values below the DL is proposed when more than 15% of the values are reported 
as not detected, consider using nonparametric methods or a test of proportions to analyze the 
data. 
 
 H-3.1  As a simplified case study showing the magnitude of effect on simple statistics at-
tributable to different proxy concentrations, consider the data in Table H-2 for sodium in surface 
soil at a site. This table presents summary statistics for sodium data when 3 results of the 21 
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samples analyzed are not detected and 8 types of proxy concentrations have been used to repre-
sent these non-detected results. These proxies are the DL, RL, ½DL, ½RL, and a random number 
selected in four different ways as described in the table. 
 
 H-3.2  Summary statistics, in particular the average and standard deviation, are affected 
by the choice of proxy concentration. Proxy concentrations were developed based on the sample-
specific DL and the project RL to illustrate how they are affected by the limit used for estima-
tion. In this case study, a concentration not detected is reported as < DL. The DL is more appro-
priate to use to estimate a proxy than the RL, because it is the closest value at which the non-
detected concentration may have occurred. If a concentration was > DL, but still < RL, the con-
centration is reported as a detect. Hypothetically, had only the RL been available and no DL had 
been provided, an alternative method to determine a proxy concentration would be to select the 
lower of the RL and the minimum detected result. Then, the proxy value would be at least below 
all of the detected concentrations. 
 
 H-3.3  As a basis for comparison, the summary statistics were also calculated using only 
the positively detected results in column 1 of Table H-2. In this instance, it is expected that the 
calculated average concentration would be higher than the true average, and the calculated stan-
dard deviation would be lower than the true standard deviation. When the RL is used to create 
proxy values (columns 7, 9, and 11), the average is higher and the standard deviation is lower 
than the associated summary statistics when the DL is used (columns 6, 8, and 10). Of all the 
cases when the RL is used to create a proxy, the case when a random number between zero and 
the RL is used (column 11) tends to have estimates for the average and standard deviation that 
are similar to the cases when the DL is used. This may be related to the fact that when a simple 
substitution such as the RL or ½RL is used, the variability is reduced because the proxy concen-
trations do not account for the inherent variation among concentrations. Proxy values are consis-
tently the same number, whereas a proxy value based on a random number varies. It is also 
interesting to note that, in general, the summary statistics are similar for cases using random 
numbers as proxy values, no matter if the proxy value was based on the DL, RL, or the lowest 
detected result. 
 
H-4 Methods for 15 to 50% NDs.  Adjustment methods for treating NDs are commonly ap-
plied when NDs compose 15 to 50% of the data set. These various methods have their strengths 
and weaknesses, and they are presented first. Cohen’s method is probably the most frequently 
used. A brief outline of a non-parametric procedure follows the discussion of adjustment meth-
ods. 
 
 H-4.1  Cohen’s Method.  Cohen’s method provides adjusted estimates of the sample 
mean and standard deviation that accounts for data below the detection level when data are nor-
mally distributed. The adjusted mean and standard deviation can then be used in the parametric 
test described in Appendix L (EPA 600/R-96/084 QA/G-9). This method requires knowing the 
censoring level, the percent of NDs, and either the arithmetic mean and standard deviation of the 
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data (if the data are normally distributed) or the arithmetic mean and standard deviation of the 
log-transformed data (if the data are log-normally distributed). The data must also be evaluated 
for normality (Appendix F). For Cohen’s method, the distribution is tested on the entire data set: 
positive detections and censored data. If the distribution testing fails to be normal or lognormal, 
Atchison’s method (described below) may be more appropriate. Once the data distribution has 
been determined to be normal, the proxy concentrations themselves are essentially irrelevant 
when computing the adjusted mean and standard deviation.  
 
 H-4.1.1  Cohen’s adjustment is a theoretically attractive method for handling cases with 
between 15 and 50% NDs. Conceptually, the method considers the detected results to be the top 
X% of an assumed distribution (normal, lognormal). The mean and standard deviation are then 
computed by filling in the bottom Y% of the assumed distribution (i.e., by assuming that the NDs 
represent the lower tail of the assumed distribution). These are referred to as the adjusted mean 
and adjusted standard deviation. This method appears to be a reasonable method for handling 
NDs and is attractive because it does not require the use of proxy concentrations (after normality 
has been determined).  
 
 H-4.1.2  There are, however, several practical difficulties encountered when applying this 
method, as follows. 
 
 H-4.1.2.1  Because there are no tests for how reliably the top X% of the data represent the 
top X% of a normal or lognormal distribution, there is a high degree of reliance on subjective 
judgment in selecting the appropriate distribution. So, the dilemma remains whether it is more 
appropriate to determine the distribution based on just the detected values or whether it is more 
appropriate to determine the distribution based on detects and proxy concentrations representing 
the NDs. 
 
 H-4.1.2.2  With Cohen’s method, the sample size is effectively reduced because estimates 
are based only on the detected results. Estimates that are based on a small number of results are 
highly sensitive to the degree of uncertainty. This is particularly true when a lognormal distribu-
tion is assumed, and there is a high proportion of ND results. This leads to poorer estimates of 
the standard deviation, which can substantially impact calculations. 
 
 H-4.1.2.3  The method assumes that a single censoring level applies to all ND results. 
This is not always true (for example, if some NDs are for diluted samples and others are not), 
and the selection of the censoring level used in the calculations can have a substantial effect on 
the outcome. 
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Table H-2 
Case Study, Sodium in Surface Soil: Summary Statistics Using Various Substitution Methods for Proxy Values 

  1 2 3 4 5 6 7 8 9 10 11 

Sampling 
Event Sample 

Result 
(mg/kg) 

DL 
(mg/kg) 

RL 
(mg/kg) 

1/2DL as 
Proxy 

1/2RL as 
Proxy 

DL as 
Proxy 

RL as 
Proxy 

Random 
Number be-
tween 0 and 
DL as Proxy 

Random 
Number be-
tween 0 and 
RL as Proxy 

Random Number be-
tween 0 and lower of 
min. result and DL as 

Proxy 

Random Number be-
tween 0 and lower of 
min. result and RL as 

Proxy 
A SS-010 ND 50 500 25 250 50 500 18.4 68.4 4.4 7.3 
A SS-020 ND 50 500 25 250 50 500 24.5 272.0 38.1 56.3 
A SS-030 1710           
A SS-040 1860           
A SS-050 2150           
A SS-060 ND 50 500 25 250 50 500 13.9 47.8 48.1 28.6 
B SB01 750           
B SB02 2430           
B SB03 1160           
B SB04 66           
B SB05 140     
B SB06 89    

Positive detections for columns 2 through 11 are the same as reported in column 1. They are 
omitted to highlight the DL, RL, and various proxy values.  

B SB07 120           
B SB08 60           
B SB09 107           
B SB10 170           
B SB11 180           
B SB12 310           
B SB13 71           
B SB14 88           
B SB15 61           

Summary Statistics 
25th Percentile 88.25   66 89 66 89 66 71 66 66 

Median 155   120 180 120 180 120 140 120 120 
75th Percentile 1057.5   750 750 750 750 750 750 750 750 

Average 640.1   552.2 584.4 555.8 620.1 551.4 567.2 553.0 553.1 
Standard Deviation 828.9   795.4 776.9 792.9 765.8 796.0 786.8 794.9 794.8 

DL = Sample-specific Detection Limit  
RL = Project Reporting Limit 
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 H-4.1.3  Because this method requires knowing the censoring level, which is sometimes 
not reported and sometimes differs from one sample to another when it is reported, the following 
recommendations should be followed when Cohen’s method is used. 
 
 H-4.1.3.1  If the censoring level (DL) is reported, and is the same for all non-detected re-
sults, use this value. 
 
 H-4.1.3.2  If the censoring level (DL) is reported, but is not consistent across all non-
detected results, it is preferable to use the minimum censoring level among the NDs if there is 
justification to do so. 
 
 H-4.1.3.3  If the censoring level is not reported, then the values used to compute the 
proxy concentrations is the lesser of the RL and the minimum detected result. 
 
 H-4.1.3.4  If the RL and minimum detected results are the same for all non-detects, use 
that value. 
 
 H-4.1.3.5  If the RL values are not consistent across all non-detected results, use the 
minimum value among the NDs if there is justification to do so. 
 
 H-4.1.4  Because of the unrealistically elevated summary statistics that result when 
Cohen’s method is applied, this method should be used with caution. Using Cohen’s method is 
not recommended in more complicated evaluations, such as those required for an analysis of 
variance. Despite the limitations, there may be specific instances where it is applicable. In these 
cases, the results should be examined carefully to ensure that the conclusions are reasonable. The 
computational details of Cohen’s method are presented in Paragraph H-4.2, and an example is 
given in Paragraph H-4.3. 
 
 H-4.2  Directions for Cohen’s Method.  Let nm xxxx ,,, 21 KK  represent the n data points 
with the first m values representing the data points above the DL. Thus, there are (n – m) data 
points below the DL.  
 
 H-4.2.1  Verify the distribution of the data to determine if they follow a normal or log-
normal distribution (Appendix F). If they follow a normal distribution, then the raw data should 
be used for the following calculations. If the data follow a lognormal distribution, then the log-
transformed data should be used for the following calculations. 
 
 H-4.2.1.1  Compute the sample mean dx  from the data above the DL:  
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 H-4.2.1.2  Compute the sample variance 2

ds  from the data above the DL:  
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 H-4.2.1.3  Compute  
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 H-4.2.1.4  Use h and γ  in Table B-3 of Appendix B to determine λ̂ . For example, if h = 
0.4 and γ = 0.30, then λ̂ = 0.6713. If the exact value of h and γ  do not appear in the table, use 
double linear interpolation (Paragraph H-4.4) to estimate λ̂ . 
 
 H-4.2.1.5  Estimate the corrected sample mean, x , and sample variance, 2s , to account 
for the data below the DL as follows:  
 
 )(ˆ DLxxx dd −−= λ  
 
 222 )(ˆ DLxss dd −+= λ .  
 
 H-4.2.2  If these estimates are based on the log-transformed data, then they can be trans-
formed back to the original units to estimate the mean and variance of the lognormal distribution. 
For example, if n is large, the mean and variance (of the untransformed data set) can be calcu-
lated as follows: 
 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

2
exp

2sxxLn  and ( )[ ]1exp 222 −= sxsLn . 
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 H-4.3  Example—Application of Cohen’s Method.  Of the groundwater analyses for ben-
zene at Site A in monitoring well MW03, 10 of the 15 sample results are positive detections and 
5 of the 15 sample results are NDs. Table H-3 presents the benzene concentrations, the DL, and 
natural log of the concentrations. 
 
Table H-3 
Benzene Concentrations, the DL, and Natural Log of the Concentrations 

Sampling Event Result, X (μg/L) DL (μg/L) Ln(X) (Ln[μg/L]) 
29-Jan-98 ND 0.0605 ND 
18-Apr-98 1.78 0.0375 0.5766 
15-Jul-98 ND 0.0375 ND 
18-Oct-98 2.31 0.0375 0.8372 
18-Apr-99 7.24 0.0469 1.980 
18-Jul-99 1.85 0.0759 0.6152 
20-Oct-99 0.308 0.0759 –1.178 
1-Apr-00 2 0.0504 0.6931 
17-Jul-00 0.143 0.0353 –1.945 
16-Oct-00 0.235 0.0353 –1.448 
17-Jan-01 ND 0.0641 ND 
4-May-01 0.759 0.0401 –0.2758 
28-Jul-01 0.222 0.0401 –1.505 
5-Nov-01 ND 0.0465 ND 
31-Jan-02 ND 0.0465 ND 

 
 H-4.3.1  The total number of samples 15=n , the number of detects 10=m , and the 
number of non-detects 5=− mn . 
 
 H-4.3.2  The distribution of the positive detections was determined by the Shapiro-Wilk 
test (Appendix F) to be lognormal. The distribution of the entire data set, including NDs set to 
the proxy concentration equal to the DL, was also tested and evidence of a lognormal distribution 
was found. Thus, the Cohen’s adjustment may be used. 
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 H-4.3.3  The DLs vary for the NDs. The lowest DL associated with the NDs will be used 
in these calculations. So, Ln(0.0375) 3.283DL = = − . 
 

 1731.0
))283.3(1650.0(

683.1
2 =

−−−
=γ  . 

 
 H-4.3.4  Using 3333.0=h and 1731.0=γ  in Table B-3 of Appendix B and double linear 
interpolation (see Paragraph H-4.4 for details), 5020.0ˆ =λ ,  
 
 [ ]{ }0.1650 0.5020 0.1650 ( 3.283) 1.730x = − − × − − − = −  
 
and  
 
 [ ]{ }22 1.683 0.5020 0.1650 ( 3.283) 6.563s = + × − − − = . 

 
 H-4.3.5  Though n is relatively small, for the purposes of illustration, the corrected sam-
ple mean and variance for the lognormal distribution (based on the original units) are calculated 
as discussed in Paragraph H-4.2. 
 

 719.4
2
563.6730.1exp =⎟

⎠
⎞

⎜
⎝
⎛ +−=Lnx  

 
and  
 
 ( )[ ] .21171563.6exp)730.1( 22 =−−=Lns   
 
 H-4.4  Double Linear Interpolation.  The details of the double linear interpolation are 
provided to assist in the use of Table B-3 of Appendix B. Suppose the desired value corresponds 
to γ = 0.1731 and h = 0.3333 from Paragraph H-4.3. The values λ̂  from Table B-3 for interpola-
tion are: 
 

γ   H = 0.30  h = 0.35 
0.15 0.4330 0.5296 
0.20 0.4422 0.5403 

 
 H-4.4.1  There are 0.05 units between 0.30 and 0.35 on the h scale, and 0.0333 units be-
tween 0.30 and 0.3333. Therefore, the value of interest lies (0.0333/0.05)1000% = 66.6% of the 
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distance along the interval between 0.30 and 0.35. To linearly interpolate between tabulated val-
ues on the h axis for γ = 0.15, the range between the values must be calculated, 0.5296 – 0.4330 
= 0.0966; the value that is 66.6% of the distance along the range must be computed, 0.0966 × 
0.666 = 0.06434; and then that value must be added to the lower point on the tabulated values, 
0.4330 + 0.06434 = 0.4973. Similarly for γ = 0.20, 0.5403 – 0.4422 = 0.0981, 0.0981 × 0.666 = 
0.06533, and 0.4422 + 0.06544 = 0.5075. So,  
 

γ   h = 0.30  h = 0.3333  h = 0.35 
0.15 0.4330 0.4973 0.5296 
0.20 0.4422 0.5075 0.5403 

 
 H-4.4.2  On the γ -axis there are 0.0231 units between 0.15 and 0.1731, and there are 
0.05 units between 0.15 and 0.20. The value of interest (0.1731) lies (0.0231/0.05)100% = 46.2% 
of the distance along the interval between 0.15 and 0.20, so 0.5075 – 0.4973 = 0.0102, 0.0102 × 
0.462 = 0.004712. Therefore, .5020.0004712.04973.0ˆ =+=λ  
 
 H-4.5  Atchison’s Method.  Previous adjustments to the mean and variance assumed that 
the data values really were present, but could not be recorded or seen as they were below the DL. 
In other words, if the DL had been substantially lower, the data values would have been re-
corded. There are cases, however, where the data values are below the DL because they are actu-
ally not present, the contaminant or chemical of concern being entirely absent. The investigator 
may have reason to believe that the contaminant is absent, but is unable to prove it is below the 
analytical DLs. Such data sets are actually a mixture—partly the assumed distribution (for exam-
ple, a normal distribution) and partly a number of real zero values. Atchison’s method is used in 
this situation to adjust the mean and variance for the zero values. It should also be noted that At-
chison’s method differs from Cohen’s method, in that, for Atchison’s method, a normality test is 
performed for the detected results only. 
 
 H-4.5.1  Atchison’s method for adjusting the mean and variance of the values above the 
DL works quite well provided the percentage of NDs is between 15 and 50% of the total number 
of values. Care must be taken when using Atchison’s adjustment because the mean is reduced 
and variance increased. With such an effect, it may become very difficult to use the adjusted data 
for tests of hypotheses or for predictive purposes. 
 
 H-4.5.2  As a diagnostic tool, Atchison’s adjustment can lead to an evaluation of the data 
to determine if two populations are being sampled simultaneously: one population being repre-
sented by a normal distribution, the other being simply blanks. In some circumstances, such as 
investigating a hazardous site, it may be possible to relate the position of the sample through a 
posting plot and determine if the target population has not been adequately stratified. Directions 
for Atchison’s method are contained in Paragraph H-4.6, and an example is contained in Para-
graph H-4.7. 
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 H-4.6  Directions for Atchison’s Method to Adjust Means and Variances.  Let 

nm xxxx ,,,,, 21 KK  represent the data points where the first m values are above the DL and the 
remaining (n – m) data points are below the DL.  
 
 H-4.6.1  Using the data above the detection level, verify this subset of data follows a nor-
mal distribution. 
 
 H-4.6.2  Using the data above the detection level, compute the sample mean,  
 

 ∑
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 H-4.6.3  Estimate the corrected sample mean, 
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and the sample variance,  
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 H-4.7  Example for Atchison’s Method to Adjust Means and Variances.  Atchison’s 
method will be used to adjust the mean and standard deviation of the groundwater concentrations 
for benzene at Site A and well MW03, presented in Paragraph H-4.3.  
 
 H-4.7.1  So, 15=n , 10=m , and 5=− mn . 
 
 H-4.7.2  According to Paragraph H-4.3, the detected results from this data set follow a 
lognormal distribution; so, the log-transformed data will be used to adjust the mean and variance. 
The sample mean and variance based on just the data above the detection level are  
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 1650.0−=dx  
 
and  
 
 683.12 =ds . 
 
 H-4.7.3  The corrected sample mean and variance (in the log-scale) are: 
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 H-4.8  Selecting Between Atchison’s Method or Cohen’s Method.  To determine if a data 
set is better adjusted by Cohen’s method or Atchison’s method, a simple graphical procedure us-
ing a normal probability plot can be used. Directions for this procedure are given in Paragraph 
H-4.9, and an example is contained in Paragraph H-4.10. 
 
 H-4.9  Directions for Selecting Between Atchison’s Method or Cohen’s Method.  Let 

nm xxxx ,,,,, 21 KK represent the data points with the first m values above the DL and the remain-
ing n-m data points below the DL. 
 
 H-4.9.1  Use Paragraph H-4.3 to construct a Normal Probability Plot using all the data, 
but only plot the values above the detection level. This is called the Censored Plot. 
 
 H-4.9.2  Use Paragraph H-4.3 to construct a Normal Probability Plot using only those 
values above the detection level. This is called the Detects Only Plot. 
 
 H-4.9.3  If the Censored Plot is more linear than the Detects Only Plot, use Cohen’s 
method to estimate the sample mean and variance. If the Detects Only Plot is more linear than 
the Censored Plot, then use Atchison’s method to estimate the sample mean and variance.  
 
 H-4.10  Example for Selecting Between Cohen’s Method or Atchison’s Method.   
 
 H-4.10.1 This comparison will be made with the groundwater concentrations for benzene 
at Site A and well MW03, based on the log-transformed data presented in Paragraph H-4.3.  
 
 H-4.10.2 Using Paragraph H-4.3, we constructed normal probability plots based on the 
log-transformed data, as the data seem to follow a lognormal distribution based on the Shapiro-
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Wilk test. The Figure H-1 shows these plots. The Censored Plot was developed with just the de-
tected results. The Detects Only Plot was developed with all of the data (using the DL as a proxy 
value), but only the detected results were plotted. The Detects Only Plot appears to fit a line bet-
ter than the Censored Plot, so Atchison’s Method seems to be the more appropriate method to es-
timate the sample mean and variance. 
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Figure H-1.  Example of selecting between Atchison’s method and Cohen’s method. 

 
 H-4.11  Trimmed Mean.  Trimming discards the data in the tails of a data set to develop 
an unbiased estimate of the population mean. This method is considered useful when the data set 
is generally symmetric, and there are concerns about outlier data that might be mistakes or oth-
erwise unexplainable.  
 
 H-4.11.1  For environmental data, NDs usually occur in the left tail of the data, so trim-
ming the data can be used to adjust the data set to account for NDs when estimating a mean. De-
veloping a p100% trimmed mean involves trimming p100% of the data in both the lower and the 
upper tail. Note that p must be between 0 and 0.5 as p represents the portion deleted in both the 
upper and the lower tail. After np of the largest values and np of the smallest values are trimmed, 
there are n(1 – 2p) data values remaining where n represents the original number of samples.  
 
 H-4.11.2  The proportion trimmed depends on the total sample size (n), as a reasonable 
number of samples must remain for analysis. For approximately symmetrical distributions, a 
25% trimmed mean (the mid-mean) is a good estimator of the population mean. However, envi-
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ronmental data are often skewed (asymmetrical), and in these cases a 15% trimmed mean may be 
a better estimator of the population mean. It is also possible to trim the data only to replace the 
NDs. For example, if 3% of the data are below the DL, a 3% trimmed mean could be used to es-
timate the population mean. Directions for developing a trimmed mean are contained in Para-
graph H-4.12, and an example is given in Paragraph H-4.13. A trimmed variance is rarely 
calculated and is of limited use. 

 
 H-4.12  Directions for Developing a Trimmed Mean. Let nxxx ,,, 21 K  represent the n 
data points. To develop a p100% trimmed mean (0 < p < 0.5): 
  
 H-4.12.1  Let j represent the integer part of the product np. For example, if p = 0.25 and n 
= 17, np = (0.25)(17) = 4.25, so j = 4.  
 
 H-4.12.2  Delete the j smallest values of the data set and the j largest values of the data 
set.  
 
 H-4.12.3  Compute the arithmetic mean of the remaining n – 2j values,  
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This value is the estimate of the population mean. 
 
 H-4.12  Example for Developing a Trimmed Mean.  For simplicity, a 100p% trimmed 
mean (0 < p < 0.5) will be estimated using the benzene data presented in the example in Para-
graph H-4.3. As 5 out of 15 of the data are NDs, a 33.3% trimmed mean will be calculated. 
 
 15=n  
 
 333.0=p  
 
 5333.015 =×=np  
 
 5=j (the integer part of np) . 
 
So, the 5 NDs and the 5 largest values of the data set will be removed, and the remaining sam-
ples will be used to estimate the average:  
 

 .3334.0)222.0759.0235.0143.0308.0(
5
1

=++++=x  
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 H-4.13  Winsorized Mean and Standard Deviation.  Winsorizing replaces data in the tails 
of a data set with the next most extreme data value. For environmental data, NDs usually occur 
in the left tail of the data. Winsorizing can be used to adjust the data set to account for NDs, and 
the mean and standard deviation can then be computed on the new data set. Directions for Win-
sorizing data (and revising the sample size) are contained in Paragraph H-4.14, and an example 
is in Paragraph H-4.15. 
 
 H-4.14  Directions for Developing a Winsorized Mean and Standard Deviation.  Let 

nm xxxx ,,,, 21 KK represent the n data points and m represent the number of data points above 
the DL, and hence n – m below the DL.  
 

 H-4.14.1  List the data in order from smallest to largest, including NDs. Label these 
points x(1), x(2),..., x(n) such that x(1) is the smallest, x(2) is the second smallest, …., and x(n) is the 
largest.  
 
 H-4.14.2  Replace the n – m non-detects with )1( +mx  and replace the n – m largest values 
with )( mnx − . 
 
 H-4.14.3  Using the revised data set, compute the sample mean, x , and the sample stan-
dard deviation, s: 
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 H-4.14.4  The Winsorized mean wx is equal to x . The Winsorized standard deviation is  
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 H-4.14  Example for Developing a Winsorized Mean and Standard Deviation.  A Winso-
rized mean and standard deviation will be estimated using the groundwater concentrations for 
benzene at Site A and well MW03. Table H-4 presents these concentrations ordered from small-
est to largest, where the NDs are considered the lowest concentrations. The five NDs are re-
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placed by the smallest detected result (the 6th highest result) of 0.143, and the highest five de-
tected results are replaced with the 10th highest result of 0.759. 
 
Table H-4 
Groundwater Concentrations for Benzene at Site A and Well MW03 

Sampling Event Detected Result (μg/L) DL (μg/L) 
Revised Data (NDs replaced with 

smallest detected result)  

15-Jul-98 ND 0.0375 0.143 
05-Nov-01 ND 0.0465 0.143 
31-Jan-02 ND 0.0465 0.143 
29-Jan-98 ND 0.0605 0.143 
17-Jan-01 ND 0.0641 0.143 
17-Jul-00 0.143 0.0353 0.143 
28-Jul-01 0.222 0.0401 0.222 
16-Oct-00 0.235 0.0353 0.235 
20-Oct-99 0.308 0.0759 0.308 
04-May-01 0.759 0.0401 0.759 
18-Apr-98 1.78 0.0375 0.759 
18-Jul-99 1.85 0.0759 0.759 
01-Apr-00 2.00 0.0504 0.759 
18-Oct-98 2.31 0.0375 0.759 
18-Apr-99 7.24 0.0469 0.759 

 
 15=n , 10=m , 5=− mn . 
 
 H-4.14.1  Using the revised data set, we find the sample mean to be 4118.0=x ; this 
value is also the Winsorized mean. Using the revised data set, we find the the sample standard 
deviation to be 2970.0=s .  
 
 H-4.14.2  The Winsorized standard deviation is 
 

 .0395.1
115)102(
)115(2970.0

12
)1(

=
−−×
−

=
−−

−
=

nm
nssw  

 
 H-4.15  Nonparametric Procedure.  Another procedure that may be used, when the per-
cent of NDs is between 15 and 50%, is a nonparametric analysis. First, all the data values need to 
be ordered and then replaced by their ranks. The NDs are then treated as tied values and replaced 
by their mid-ranks. The ranking procedure and adjustments for tied ranks are routinely per-
formed for non-parametric tests such the Wilcoxon rank sum test. 
 
H-5 50 to 90% NDs.  If more than 50% of the data are below the DL but at least 10% of the 
observations are quantified, tests of proportions may be used to test hypotheses using the data. If 
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the parameter of interest is a mean, consider switching the parameter of interest to some percen-
tile greater than the percent of data below the DL. For example, if 67% of the data are below the 
DL, consider switching the parameter of interest to the 75th percentile. Then, the test of propor-
tion can be applied to test the hypothesis concerning the 75th percentile. It is important to note 
that tests of proportions may not be applicable for composite samples. In this case, the data ana-
lyst should consult a statistician before proceeding with analysis.  
 
H-6 Greater than 90% NDs.  The Poisson distribution can be used when 90% or more of the 
data is non-detected. In this instance, the detected results would be considered the “rare events” 
as modeled by the Poisson distribution. The Poisson model describes the behavior of a series of 
independent events over a large number of trials, where the probability of occurrence is low but 
stays constant from trial to trial. This model represents a counting process where each particle or 
molecule of contamination is counted separately but cumulatively, so that the counts for detected 
samples with high concentrations are larger than counts for samples with smaller concentrations. 
So, the Poisson model maintains the magnitude of detected concentrations. For example, a de-
tected result with a concentration of 100 ppb would have a Poisson count of 100. Counts for non-
detected results can be taken as zero or half the DL. The Poisson model is a distribution, like a 
normal distribution, that can be used to derive summary statistics such as prediction limits and 
tolerance limits. See Appendix E for a description of the Poisson distribution. 
 
H-7 Recommendations. 
 
 H-7.1  If the degree of censoring (the percentage of data below the DL) is relatively low, 
reasonably good estimates of means, variances, and upper percentiles can be obtained. However, 
if the rate of censoring is very high (greater than 50%), then little can be done statistically except 
to focus on some upper quantile of the contaminant distribution, or on some proportion of meas-
urements above a certain critical level that is at or above the censoring limit. Using nonparamet-
ric analyses is another approach for analyzing such data. 
 
 H-7.2  When the numerical standard is at or below one of the censoring levels and a one-
sample test is used, the most useful statistical method is to test whether the proportion of a popu-
lation is above (or below) the standard, or to test whether an upper quantile of the population dis-
tribution is above the numerical standard. 



EM 1110-1-4014 
15 Jan 07 

 

I-1 

APPENDIX I 
Identification and Handling of Outliers 

 
I-1 Purpose. 
 
 I-1.1  Outliers are measurements that are extremely large or small relative to the rest of 
the data and, therefore, are suspected of misrepresenting the population from which they were 
collected. Outliers influence statistics if used in calculations, and statistical tests based on para-
metric methods are generally more sensitive than nonparametric methods to outliers. Outliers 
may result from transcription errors, data-coding errors, or measurement system problems, such 
as instrument breakdown. However, outliers may also represent true extreme values of a distribu-
tion and may indicate more variability in the population or a different underlying distribution for 
the population than what was initially assumed. For example, a point that appears as an outlier 
under the assumption that the underlying distribution is normal will not necessarily appear as an 
outlier if it were initially assumed that the distribution is lognormal. Not removing true outliers 
or removing false outliers can lead to a distortion of estimates of population parameters. 
 
 I-1.2  Statistical outlier tests give the analyst probabilistic evidence that an extreme value 
(potential outlier) does not fit with the distribution of the remainder of the data and is a statistical 
outlier. These tests should only be used to identify data points that require further investigation. 
Tests alone cannot determine whether a statistical outlier should be discarded or corrected within 
a data set; this decision should be based on judgment and scientific reasoning. (See EPA 600/R-
96/084, Gilbert, 1987, for further details on identifying and handling outliers.) 
 
I-2 Methods.  Five steps are involved in treating extreme values or outliers: 
 

• Identify extreme values that may be potential outliers. 
 
• Apply a statistical test. 
 
• Scientifically review statistical outliers and decide on their disposition. 
 
• Conduct data analyses with and without statistical outliers. 
 
• Document the entire process. 

 
Potential outliers can be identified through graphical representations. Graphs, such as the box- 
and-whisker plot, normal probability plot, and time plot, can be used to identify observations that 
are much larger or smaller than the rest of the data. (Appendix J presents these graphical tools.) 
If potential outliers are identified, the next step is to apply one of the statistical tests described 
below.  
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 I-2.1  Dixon’s Test.  Dixon’s extreme value test can be used to test for statistical outliers 
when the sample size is less than or equal to 25. This test considers extreme values that are much 
smaller or larger than the rest of the data. Because this test assumes that the data without the sus-
pected outlier are normally distributed, it is necessary to test for normality in the data without the 
suspected outlier before applying Dixon’s test. If the data are not normally distributed, a trans-
formation that normalizes the data should be applied, or a different test should be used. Direc-
tions for the extreme value test are contained in Paragraph I-2.1.1 followed by an example in 
Paragraph I-2.1.2. Dixon’s test should be used when only one outlier is suspected in the data. If 
more than one outlier is suspected, the extreme value test may lead to masking, in which two or 
more outliers close in value obscure one another. Therefore, if the analyst decides to use the ex-
treme value test for multiple outliers, it should be applied to the least extreme value first; other-
wise, Rosner’s test should be used to test for multiple outliers. Rosner’s test is discussed below. 
 
 I-2.1.1  Directions for the Extreme Value Test (Dixon’s Test).  Let x(1), x(2),...,x(n) repre-
sent the data ordered from smallest to largest. Check that the data without the suspected outlier 
are normally distributed, using one of the methods in Appendix F.  
 
 I-2.1.1.1  If normality fails, transform the data or apply a different outlier test.  
 
 I-2.1.1.2  Case 1: )1(x is a potential outlier. Compute the test statistic C , where  
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 I-2.1.1.3  If C  exceeds the critical value from Table B-5 of Appendix B for the specified 
significance level α , )1(x is an outlier and should be further investigated.  
 
 I-2.1.1.4  Case 2: )(nx is a potential outlier. Compute the test statistic C , where 
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 I-2.1.1.5  If C  exceeds the critical value from Table B-5 of Appendix B for the specified 
significance level α, x(n) is an outlier and should be further investigated. 
 
 I-2.1.2  Example for the Extreme Value Test (Dixon’s Test).  Consider the following sub-
surface background chromium data in order of magnitude from smallest to largest: 3.84, 4.26, 
4.53, 4.60, 5.28, 5.29, 5.74, 5.86 (in mg/kg). Suppose there was an additional sample with a re-
sult of 10 mg/kg. As this additional sample is much larger than the other values, it is suspected 
that this point might be an outlier. The required level of significance for an outlier is 5%. 
 
 I-2.1.2.1  Testing the data for normality using the Shapiro-Wilk test (without the extreme 
value) indicated that the data were normal. Therefore, the extreme value test may be used to de-
termine if the largest data value is an outlier.  
 

 72.0
26.40.10
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 I-2.1.2.2  Because 512.072.0 >=C  (from Table B-5 of Appendix B with 9=n  and α = 
0.05), there is evidence that x(n) is an outlier at a 5% significance level and should be further in-
vestigated. 
 
 I-2.2  Discordance Test.  The discordance test can be used to test if one extreme value is 
an outlier. This test considers two cases: i) where the extreme value (potential outlier) is the 
smallest value of the data set; and ii) where the extreme value (potential outlier) is the largest 
value of the data set. The discordance test assumes that the data are normally distributed; there-
fore, it is necessary to perform a test for normality before applying the discordance test. If the 
data are not normally distributed, transform the data, apply a different test, or consult a statisti-
cian. Note that the test assumes that the data without the outlier are normally distributed, so the 
test for normality should be performed without the suspected outlier. Directions and an example 
of the discordance test are contained in Paragraphs I-2.2.1 and I-2.2.2, respectively. 
 
 I-2.2.1  Directions for the Discordance Test.  Let x(1), x(2),...,x(n) represent the data ordered 
from smallest to largest. Check that the data without the suspect outlier are normally distributed, 
using one of the methods of Appendix F, Paragraph F-11. If normality fails, transform the data or 
apply a different outlier test.  
 
 I-2.2.1.1  Compute the sample mean, x , and the sample standard deviation, s, without the 
suspected outlier. If the minimum value x(1) is a suspected outlier, compute the test statistic 
 

 
s
xx

D )1(−
= . 
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 I-2.2.1.2  If D exceeds the critical value from Table B-4 of Appendix B, x(1) is an outlier 
and should be further investigated.  
 

 I-2.2.1.3  If the maximum value )(nx is a suspected outlier, compute the test statistic 
 

 
s

xx
D n −=  . 

 
 I-2.2.1.4  If D exceeds the critical value from Table B-4 of Appendix B, x(1) is an outlier 
and should be further investigated. 
 
 I-2.2.2  Example for the Discordance Test.  Consider the following subsurface back-
ground chromium data from smallest to largest: 3.84, 4.26, 4.53, 4.60, 5.28, 5.29, 5.74, 5.86 (in 
mg/kg). Suppose there was an additional sample with a result of 10 mg/kg. Because this addi-
tional sample is much larger than the other values, it is suspected that this point might be an out-
lier. The required level of significance for an outlier is 5%. 
 
 
 I-2.2.2.1  Testing the data for normality using the Shapiro-Wilk test (without the extreme 
value) indicated the data were normal. Therefore, the discordance test may be used to determine 
if the largest data value is an outlier. 
 
 48.5=x  mg/kg and 82.1=s  mg/kg without the suspected outlier. 
 
 I-2.2.2.2  Because the maximum value )(nx  is a suspected outlier, do the following: 
 

 48.2
82.1

48.50.10
=

−
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−
=

s
xx

D n .  

 
 I-2.2.2.3  Because 110.248.2 >=D  (from Table B-4 of Appendix B with 9=n  and α = 
0.05), there is evidence that x(1) is an outlier at a 5% significance level and should be further in-
vestigated. 
 
 I-2.3  Rosner’s Test.  Rosner developed a parametric test that can be used to detect up to 
10 outliers for sample sizes of 25 or more. This test assumes that the data are normally distrib-
uted; therefore, a test for normality should be performed before applying it. If the data are not 
normally distributed, transform the data, apply a different test, or consult a statistician. Note that 
the test assumes that the data without the outlier are normally distributed, so the test for normal-
ity may be done without the suspected outlier. Directions for Rosner’s test are contained in Para-
graph I-2.3.2 and an example is contained in Paragraph I-2.3.3. 
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 I-2.3.1  Caveats.  Rosner’s test is not as easy as the preceding tests to apply. To apply this 
test, first determine an upper limit r0  for the number of outliers (r0 ≤ 10), then order the r0 ex-
treme values from most extreme to least extreme. Rosner’s test statistic is then based on the 
sample mean and sample standard deviation computed without the r = r0  extreme values. If this 
test statistic is greater than the critical value given in Table B-18 of Appendix B, there are r0 out-
liers. Otherwise, the test is performed again with the r = r0 – 1 extreme values. This process is 
repeated until either Rosner’s test statistic is greater than the critical value or r = 0. 
 
 I-2.3.2  Directions for Rosner’s Test for Outliers.  Let x(1), x(2),...,x(n) represent the ordered 
data points. By inspection, identify the maximum number of possible outliers, r0. Check that the 
data are normally distributed, using one of the methods in Appendix F, Paragraph F-11.  
 
 I-2.3.2.1  Compute the sample mean, x , and the sample standard deviation, s, for all of 
the data. Label these values )0(x and )0(s , respectively. Determine the observation farthest from 

)0(x and label this observation )0(y . Delete )0(y  from the data and compute the sample mean, la-
beled )1(x , and the sample standard deviation, labeled )1(s . Then determine the observation far-
thest from )1(x and label this observation )1(y . Delete )1(y and compute )2(x and )2(s . Continue 
this process until 0r  extreme values have been eliminated. 
 
 I-2.3.2.2  In summary, after the above process the analyst should have  
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and )(iy  is the farthest value from )(ix . (Note the above formulas for )(ix and )(is assume that the 
data were renumbered after each observation was deleted.)  
 
 I-2.3.2.3  To test if there are r outliers in the data, compute  
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−− −
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r s

xy
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Compare Rr to λr in Table B-18 of Appendix B. If, Rr ≥ λr conclude that there are r outliers. First, 
test if there are r0 outliers (compare 

0r
R to 

0r
λ ). If not, test if there are r0 – 1 outliers (compare 
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10−rR to 10−rλ ). If not, test if there are r0 – 2 outliers, and continue until it is determined there are a 
certain number of outliers or no outliers at all. 
 
 I-2.3.3  Example for Rosner’s Test for Outliers.  Consider the following subsurface site 
copper data in order from smallest to largest: 1.99, 2.19, 2.34, 2.42, 2.45, 2.64, 2.70, 2.79, 2.82, 
2.85, 2.86, 2.93, 3.10, 3.19, 3.21, 3.23, 3.25, 3.26, 3.28, 3.43, 3.55, 3.66, 3.71, 3.76, 3.83, 3.91, 
3.92, 3.97, 3.98, 4.48, 5.0, 11.1, 11.6, 12.3, 32.1, 44.2.  
 
 I-2.3.3.1  By inspection, five potential outliers are suspected. Testing the data for normal-
ity using the Shapiro-Wilk test (without the extreme values) indicated that the data were normal. 
So Rosner’s test for outliers may be used to determine if there are five or fewer outliers.  
 
 I-2.3.3.2  First the sample mean and sample standard deviation were computed for the en-
tire data set, )0(x  and )0(s . Subtraction showed that 44.20 was the farthest data point from )0(x , 
so )0(y = 44.20. Then 44.20 was deleted from the data and the sample mean, )1(x , and the sample 
standard deviation, )1(s , were computed. Subtraction showed that 32.10 was the farthest value 
from )1(x . This value was then dropped from the data and the process was repeated again on 
12.30 and 11.60 to yield the values below.  
 

i  
0 
1 
2 
3 
4 

)(ix  
5.88 
4.79 
3.99 
3.74 
3.49 

)(is  
8.43 
5.36 
2.51 
2.07 
1.54 

)(iy  
44.20 
32.10 
12.30 
11.60 
11.10 

 
 I-2.3.3.3  To apply Rosner’s test, it is first necessary to test if there are five outliers (r = 
5) by computing 
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and comparing 5R  to 5λ  in Table B-18 of Appendix B with n = 36 and α = 0.05. Because 

94.294.4 55 =>= λR , there are five outliers in the data set. 
 
 I-2.3.3.4  Suppose 94.255 => λR . 
 
 I-2.4  Walsh’s Test.  Walsh developed a nonparametric test to detect multiple outliers in a 
data set. This test requires a large sample size: n > 220 for a significance level of α = 0.05, and n 



EM 1110-1-4014 
15 Jan 07 

 

I-7 

> 60 for a significance level of 10.0=α . However, as the test is nonparametric, it may be used 
whenever the data are not normally distributed. Directions for the Walsh test for large sample 
sizes are provided in Paragraph I-2.4.1, followed by an example in Paragraph I-2.4.2. 
 
 I-2.4.1  Directions for Walsh’s Test for Large Sample Sizes.  Let x(1), x(2),...,x(n) represent 
the data ordered from smallest to largest. If 60≤n , do not apply this test. If 22060 ≤< n , then 

10.0=α . If 220>n , then 05.0=α .  
 
 I-2.4.1.1  Identify the number of possible outliers, r. Note that r can equal 1. 
 
 I-2.4.1.2  Compute  
 

 [ ]nc 2= , crk += , α/12 =b  
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where [ ] indicates rounding the value up to the next largest integer (i.e., 3.24 becomes 4).  
 
 I-2.4.1.3  The r smallest points are outliers (with an α % level of significance) if  
 
 0)1( )()1()( <++− + krr xaxax . 
 
 I-2.4.1.4  The r largest points are outliers (with an α % level of significance) if 
 
 0)1( )1()()1( >++− −+−−+ knrnrn xaxax . 
 
 I-2.4.1.5  If both of the inequalities are true, small and large outliers are indicated. 
 
 I-2.4.2  Example for Walsh’s Test for Large Sample Sizes.  Consider that the following 
surface soil lead data from Site 2 in order from smallest to largest: 11.7, 13.9, 14.4, 15.1, 17.2, 
19.1, 19.3, 19.5, 19.6, 19.9, 20.8, 21.2, 21.8, 23.4, 24.2, 24.3, 25.8, 26.4, 27.4, 28.1, 29.1, 34.3, 
35.3, 36, 37.9, 39.8, 43.8, 45.4, 51.4, 65.4, 74.4, 78.5, 87, 93.3, 105, 108, 120, 134, 135, 136, 
143, 150, 178, 186, 194, 203, 214, 216, 232, 251, 263, 268, 277, 283, 300, 421, 446, 510, 811, 
1260, 5320. 
 
 I-2.4.2  The possible outliers are 811, 1260, 5320. So r = 3. 
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 0347.2)347.21( )15163()363()3163( >++− −+−−+ xxx  
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 0)214(347.2510)347.21(811 >++−  
 
 0712.393 >/− . 
 
 I-2.4.2.2  Therefore the largest points, 811, 1260, 5320, are not outliers at 10.0=α . 
 
 I-2.5  Fourth-Spread Outlier Test.  A graphical qualitative method for identifying outliers 
entails creating box-and-whisker plots. Paragraph J-3 of Appendix J describes how to create such 
a plot. The process of identifying outliers by generating box-and-whisker plots is the same as 
identifying outliers using the “fourth-spread” outlier test (Hoaglin et al. 1983). The fourth-spread 
outlier test can identify one or more outliers from either end of the range of sample results.  
 
 I-2.5.1  A box-and-whisker plot identifies mild and extreme outliers. A mild outlier is a 
statistical outlier that is any result less than the difference of the 25th percentile and 1.5 times the 
inter-quartile range (IQR), or any result greater than the sum of the 75th percentile and 1.5 × IQR. 
An extreme outlier is a statistical outlier that is any result less than the difference of the 25th per-
centile and 3 × IQR, or any result greater than the sum of the 75th percentile and 3 × IQR. Ex-
treme outliers are more severe than mild outliers and should be considered more influential. 
 
 I-2.5.2  The advantages of this test are that it does not have any sample size requirements 
and can identify one or more outliers. A disadvantage of the test is that no level of significance is 
placed on the decision to declare a result an outlier. However, it should be noted that, for a nor-
mally distributed variable X with a standard deviation of σ, 1.5 × IQR is approximately 2σ and 
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there is slightly less than a 1% chance that points will be greater than X0.75 + 1.5 × IQR or less 
than X0.25 – 1.5 × IQR. Otherwise, the choice of 1.5 times the inter-quartile range is “somewhat 
arbitrary, but experience with many data sets indicates that this definition serves well in identify-
ing values that may require special attention” (Hoaglin et al., 1983). 
 
 I-2.6  Multivariate Outliers.  Multivariate analysis, such as factor analysis and principal 
components analysis, involves the statistical analysis of several variables simultaneously. Out-
liers in multivariate analysis are values that are extreme in relationship to one or more variables. 
As the number of variables increases, identifying potential outliers using graphical representa-
tions becomes more difficult. Special procedures are required to test for multivariate outliers. 
Details of these procedures are beyond the scope of this document, but are contained in statistical 
textbooks on multivariate analysis (see Gnanadesikan, 1997). 
 
I-3 Retaining or Discarding Outliers.  Once outliers are identified, the project team should 
review outliers and determine, case-by-case, if there is an explanation for each outlier. Further-
more, any suspect data point, whether identified as a statistical outlier or not, should be re-
viewed. Unexpected values, especially those identified as statistical outliers, should not be 
removed from any data evaluations unless a specific reason for the unexpected measurements 
can be determined.  
 
 I-3.1  If a data point is found to be an outlier, the analyst may: i) correct the data point; ii) 
discard the data point from analysis; or iii) use the data point in all analyses. Removing outliers 
should be based on scientific reasoning in addition to the results of the statistical test. An outlier 
should never be discarded based solely on a statistical test. Instead, the decision should be based 
on some scientific or quality assurance basis. Discarding an outlier from a data set should be 
done with extreme caution, particularly for environmental data sets, which often contain legiti-
mate extreme values.  
 
 I-3.2  According to EPA 530-SW-89-026, a value may be corrected or dropped only if 
one can determine that an error has occurred. If an error can be identified, the correction should 
be made and the correct value used. Data points containing transcription errors should be cor-
rected whether they are outliers or not. A value that is identified as incorrect may be deleted from 
the data set. Valid reasons for removing outliers or unexpected values include, for example, evi-
dence they are the result of contaminated sampling equipment, laboratory errors, malfunctioning 
instrumentation, transcription errors, sampling of differing geological strata, or a non-typical 
sampling location taken for background. If a plausible reason cannot be found for removing an 
unexpected value or a statistical outlier, the result should be treated as a true but extreme value 
and retained in the data.  
 
 I-3.3  The spatial context of outliers or potential outliers should be considered. If outliers 
occur at different locations for different analytes and tend to be located close to low concentra-
tions, then sporadic high concentrations are simply a feature of the area; there is no reason to 



EM 1110-1-4014 
15 Jan 07 
 

I-10 

treat the data differently as a result of their presence. If outliers tend to occur in the same location 
for different analytes and are found close to other locations with elevated concentrations, it may 
be appropriate to consider the elevated locations separately. 
 
 I-3.4  If an outlier is discarded from the data set, all statistical analysis of the data should 
be applied to both the full and truncated data set so that the effect of discarding observations may 
be assessed. If scientific reasoning does not explain the outlier, it should not be discarded from 
the data set. 
 
 I-3.5  If any data points are found to be statistical outliers, this information should be 
documented along with the analysis of the data set, regardless of whether any data points are dis-
carded. If no data points are discarded, the analyst should document that a process was imple-
mented to identify any statistical outliers but none were found. If any data points are discarded, 
the analyst should document each data point, the statistical test performed, the scientific reason 
for discarding each data point, and the effect on the analysis of deleting the data points. Such in-
formation is critical for effective peer review. 
 
I-4 Applications.  This Paragraph provides a case study regarding outliers and how conclu-
sions are affected by including or excluding outliers. This case study focuses on identifying out-
liers in background data.  
 
 I-4.1  A background metals study was conducted to determine background concentrations 
that may be compared to site concentrations. Regulators were concerned with identifying outliers 
in the background data and removing them from the background data set, based upon the errone-
ous assumption that unusually high concentrations cannot represent background conditions and 
necessarily represent site-related contamination. All background data (by metal), were evaluated 
for outliers using two outlier tests—the discordance test and fourth-spread test. For this investi-
gation, the regulator required that any result identified as a statistical outlier be removed from the 
background data set, which biased the background sample towards smaller values. This case 
study focuses on the evaluation of antimony in surface soil. 
 
 I-4.2  Table I-1 presents the 20 samples associated with antimony concentrations from the 
background surface soil. Generally, the concentrations were quite small, ranging from 0.182 to 
0.398 mg/kg. Outlier tests were performed on the highest concentration, 0.398 at sample BACK-
005-005, to see if this concentration could be considered a statistical outlier.  
 
 I-4.3  First, a box-and-whisker box plot was generated to visualize the data and to per-
form the fourth-spread test. As Figure I-1 presents with the box plot, the highest concentration is 
a mild outlier. 
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Table I-1 
Background Surface Soil Data for Antimony 

Sample ID Result (mg/kg) Sample ID Result (mg/kg) 
BACK-001-0005  0.235 BACK-0011-0005  0.202 
BACK-002-0005  0.285 BACK-0012-0005  0.27 
BACK-003-0005  0.202 BACK-0013-0005  0.298 
BACK-004-0005  0.22 BACK-0014-0005  0.209 
BACK-005-0005  0.398 BACK-0015-0005  0.182 
BACK-006-0005  0.279 BACK-0016-0005  0.233 
BACK-007-0005  0.215 BACK-0017-0005  0.186 
BACK-008-0005  0.25 BACK-0018-0005  0.267 
BACK-009-0005  0.279 BACK-0019-0005  0.273 

BACK-0010-0005  0.23 BACK-0020-0005  0.28 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

A
nt

im
on

y 
(m

g/
kg

) 

0.20 

0.25 

0.30 

0.35 

0.40  

o = Mild Outlier 
x = Extreme Outlier

 
 

Figure I-1. Box-and-Whisker Plot for Antimony. 
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 I-4.4  The discordance test was done to determine if the maximum result might be con-
sidered a statistical outlier. Results of the discordance test show the maximum result is an outlier, 
as seen below. 
 
 I-4.4.1  Normality Assumption.  The Shapiro-Wilk test was performed on the raw data, 
without the maximum result. The test statistic for this test was 0.9319 and the p value associated 
with this test statistic was 0.1878. Based on 95% level of confidence, because 0.1878 > 0.05, 
there is evidence to suggest the data without the maximum result were normal. Therefore, doing 
the discordance test on the raw data was appropriate. 
 

 I-4.4.2  Test Statistic.  268.4
0366.0

2418.0398.0
=

−
=

−
=

s
xXD n . 

 
 I-4.4.3  Critical Value.   2.557 (based on )05.0=α . 
 
 I-4.4.4  Conclusion.  Because 4.268 > 2.557, there is evidence that the maximum result is 
an outlier. 
 
 I-4.5  As both outlier tests showed the maximum result is a statistical outlier, the maxi-
mum antimony result for surface soil was removed from the background data set at the request of 
the regulator even though the outlier appeared to be a valid result (i.e., it was not entered incor-
rectly or demonstrated to be the result of a non-complaint sampling or analytical procedure).  
 
 I-4.6  From a statistical perspective, it was probably inappropriate to remove the maxi-
mum detected concentration as an outlier for the antimony data set. To illustrate this conjecture, 
separate lists of summary statistics are presented in Table I-2 for all 20 antimony results and for 
the 19 antimony results without the maximum concentration.  
 
Table I-2 
Summary Statistics for Antimony Background Surface Soil Data 

 

n Minimum 
(mg/kg) 

Maximum 
(mg/kg) 

Median
(mg/kg)

Mean 
(mg/kg)

Standard 
Deviation
(mg/kg) 

95% 
UCL 

(mg/kg)

Distri-
bution 

p value for 
Shapiro-Wilk 
test for origi-

nal data 

p value for 
Shapiro-Wilk 
test for log-
transformed 

data 
All Samples 20 0.182 0.398 0.2425 0.25 0.04988 0.270 Log-

normal
0.0369 0.3309 

All but 
Max. 

19 0.182 0.298 0.235 0.242 0.0366 0.256 Normal 0.1878 0.1667 

 
 I-4.5  The most striking difference between the two data sets is their distribution. When 
all samples were evaluated, there was evidence that the data followed a lognormal distribution, 
but when all samples except the maximum were evaluated, there was evidence that the data fol-
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lowed both a normal and lognormal distribution. (A data point from a lognormal distribution can 
appear as an outlier when it is erroneously assumed that the data set is normally distributed.) 
However, for this particular data set, the removal of the outlier (0.398 mg/kg) did not signifi-
cantly affect decision-making because all of the antimony concentrations were less than the 
state-specified risk-based decision level of 2.7 mg/kg. Furthermore, fortuitously, similar statisti-
cal results were obtained with and without the outlier. Although the maximum detected concen-
tration was eliminated, the sample median and mean were not seriously affected, and the 
difference between maximum concentrations was less than an order of magnitude. However, un-
der different circumstances (e.g., had the risk-based decision limit or the difference between the 
two highest values been larger), the comparisons between the site and background data sets 
could have been adversely affected (e.g., a “false positive” could have resulted). Data points 
should never be removed from any data set (background or otherwise) solely on the basis of an 
outlier test unless an independent weight of evidence indicates that the data points are not repre-
sentative of the underlying population of interest. 
 
I-5 Recommendations.  If the data are normally distributed, Rosner’s test is recommended 
when the sample size is greater than 25 and the extreme value test is recommended when the 
sample size is less than 25. If only one outlier is suspected, the discordance test may be substi-
tuted for either of these tests. If the data are not normally distributed, or if the data cannot be 
transformed so that the transformed data are normally distributed, the analyst should apply a 
nonparametric test, such as the fourth-spread test, or Walsh’s test. A summary of this informa-
tion is contained in Table I-3. Recommendations on selecting a statistical test for outliers are 
listed. 
 
Table I-3 
Recommendations for Selecting a Statistical Test for Outliers 

Sample Size Test Assumes  
Normality 

Multiple  
Outliers 

25≤n  Extreme Value Test Yes No/Yes 
50≤n  Discordance Test Yes No 
25≥n  Rosner’s Test Yes Yes 
50≥n  Walsh’s Test No Yes 

Any sample size Fourth-Spread Test No Yes 
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APPENDIX J 
Graphical Tools 

 
J-1 Introduction.  Graphs are powerful data evaluation tools, providing a quick assessment 
of concentration ranges, extreme concentrations or data anomalies, and patterns and trends that 
may be unapparent otherwise. In exploratory data analysis, various graphical techniques are used 
initially to display the data so that users may determine what statistical evaluations will be used. 
Although a subjective assessment of a plot alone is often inadequate to make conclusions about 
the significance of a trend or association, plots support quantitative statistical tests. 
 
 J-1.1  This Appendix presents some common graphical methods for presenting environ-
mental data in meaningful ways. These graphical methods are: 
 

• Histogram/Frequency Plots. 
 

• Box-and-Whiskers Plots. 
 

• Quantile Plots. 
 

• Normal Probability Plots (Quantile-Quantile Plots). 
 

• Empirical Quantile-Quantile Plots. 
 

• Plots for Temporal Data. 
 

• Plots for Spatial Data. 
 

• Plots for Two or More Variables. 
 

• Contouring Data. 
 
 J-1.2  Additional information on most of the plots presented here may be found in Mason 
et al. (1989). For temporal and spatial plots see EPA 600/R-96/084, QA/G-9. 
 
J-2 Histogram/Frequency Plots 
 
 J-2.1  Introduction.  Two of the oldest methods for summarizing data distributions are the 
frequency plot (Figure J-1) and histogram (Figure J-2). Both frequency plots and histograms di-
vide the range of measured values of a variable into equal intervals, and use a bar graph to dis-
play the results. In a frequency plot, the height of each bar represents the number of observations 
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within each interval. In a histogram, the height of each bar represents the percentage of observa-
tions within each interval. 
 
 J-2.1.1  There are slight differences between the histogram and the frequency plot. In the 
frequency plot, the relative height of the bars represents the relative density of the data or num-
ber of observations within a group. In a histogram, the area within the bar represents the relative 
density of the data or percentage of observations within a group.  
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Figure J-1.  Frequency plot: normal data. 
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Figure J-2.  Histogram: lognormal data. 
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 J-2.1.2  When plotting a histogram for a continuous variable (such as concentration), it is 
necessary to decide on an endpoint convention, that is, what to do with cases that fall on the 
boundary of a box. With discrete variables (i.e., family size), the intervals can be centered in be-
tween the variables. For the family size data, the intervals can span between 1.5 and 2.5, 2.5 and 
3.5, and so on, so that the whole numbers that relate to the family size can be centered within the 
box. The visual impression conveyed by a histogram or a frequency plot can be quite sensitive to 
the choice of interval width. The choice of the number of intervals determines whether the histo-
gram shows more detail for small sections of the data or whether the data will be displayed more 
simply as a smooth overview of the distribution. For a continuous measurement variable, X, the 
histogram should approach the “true” probability distribution as the sample size increases and 
the width of the intervals decrease. For example, if the variable X is normally distributed, then 
the histogram will approach a Gaussian curve (see Appendix F). Figure J-1 plots 95 observations 
from a sample from a normal distribution with a mean of 5 and a standard deviation of 2. Notice 
how the histogram approximates a normal curve. Likewise, Figure J-2 plots 95 observations 
from a sample from a lognormal distribution with μ = 1 and σ = 1. 
 
 J-2.1.3  Directions for generating a histogram and a frequency plot are presented in Para-
graph J-2.2 and an example is contained in Paragraph J-2.3.  
 
 J-2.2  Directions for Generating a Histogram and a Frequency Plot.  Let x1, x2,..., xn rep-
resent the n data points. To develop a histogram or a frequency plot do the following. 
 
 J-2.2.1  Select intervals that cover the range of observations. If possible, these intervals 
should have equal widths. A rule of thumb is to have between 7 to 11 intervals. If necessary, 
specify an endpoint convention, i.e., what to do with cases that fall on interval endpoints. 
 
 J-2.2.2  Compute the number of observations within each interval. For a frequency plot 
with equal interval sizes, the number of observations represents the height of the boxes on the 
frequency plot. 
 
 J-2.2.3  Determine the horizontal axis based on the range of the data. The vertical axis for 
a frequency plot is the number of observations. The vertical axis of the histogram is the percent-
age (or proportion) of results that fall within each interval on the x-axis. 
 
 J-2.2.4  For a histogram, compute the percentage of observations within each interval by 
dividing the number of observations within each interval (Step J-2.2.3) by the total number of 
observations. 
 
 J-2.2.5  For a histogram, select a common unit that corresponds to the x-axis (Step J-
2.2.1). Compute the number of common units in each interval and divide the percentage of ob-
servations within each interval (Step J-2.2.4) by this number. This step is only necessary when 
the intervals (Step J-2.2.1) are not of equal widths. 



EM 1110-1-4014 
15 Jan 07 
 

J-4 

 
 J-2.2.6  Using boxes, plot the intervals against the results of Step J-2.2.5 for a histogram 
or the intervals against the number of observations in an interval (Step J-2.2.2) for a frequency 
plot. 
 
 J-2.3  Example of a Histogram and a Frequency Plot.  Consider the following results of 
benzene concentrations in groundwater (ppb): 0.0292, 0.0300, 0.0300, 0.0300, 0.0353, 0.0353, 
0.0353, 0.0353, 0.0353, 0.0353, 0.0375, 0.0375, 0.0375, 0.0375, 0.0375, 0.0375, 0.0375, 0.0375, 
0.0375, 0.0401, 0.0401, 0.0401, 0.0401, 0.0401, 0.0401, 0.0444, 0.0465, 0.0465, 0.0465, 0.0465, 
0.0465, 0.0465, 0.0465, 0.0465, 0.0469, 0.0469, 0.0469, 0.0480, 0.0504, 0.0504, 0.0504, 0.0548, 
0.0585, 0.0605, 0.0605, 0.0605, 0.0641, 0.0641, 0.0641, 0.0641, 0.0759, 0.0759, 0.0759, 0.0759, 
0.0759, 0.0759, 0.0786, 0.0786, 0.0855, 0.0970, 0.0971, 0.1430, 0.2220, 0.2350, 0.3080, 0.4840, 
0.6350, 0.7590, 0.8130, 1.1500, 1.7200, 1.7800, 1.8400, 1.8500, 1.9200, 2.0000, 2.0100, 2.1700, 
2.1900, 2.3100, 2.4600, 2.6800, 2.7500, 2.9500, 3.4200, 3.4500, 3.7900, 4.3000, 5.4700, 5.7700, 
5.8700, 6.1700, 6.9100, 7.2400, 7.5600, 8.3400, 8.6400, 9.3300, 11.000, 11.100, 12.200, 14.100, 
17.000, 20.200, 21.800, 29.100, 36.700 and 44.500. 
 
 J-2.3.1  These data values span 0 to 50 ppb. Equally sized intervals of 5 ppb will be used: 
0 to 5 ppb, 5 to 10 ppb, etc. The endpoint convention will be that values are placed in the highest 
interval containing the value. For example, a value of 5 ppb will be placed in the interval 5 to 10 
ppb instead of 0 to 5 ppb. Table J-1 shows the number of observations within each interval de-
fined here 
 
Table J-1 
Number of Observations within Each Interval 

Interval (ppb) Observations in Interval 
Percent Observations in 

Interval 
Percent Observations 

per ppb 
0 5 88 81.5 16.3 

5–10 10 9.26 1.85 
10–15 4 3.70 0.74 
15–20 1 0.926 0.185 
20–25 2 1.85 0.370 
25–30 1 0.926 0.185 
30–35 0 0 0 
35–40 1 0.926 0.185 
40–45 1 0.926 0.185 

 
 J-2.3.2  The horizontal axis for the data is from 0 to 50. The vertical axis for the fre-
quency plot is from 0 to 88 and the vertical axis for the histogram is from 0 to 81.5%. 
 
 J-2.3.3  There are 108 observations total, so the number of observations shown in the ta-
ble will be divided by 108. The results are shown in the third column of the table. 
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 J-2.3.4  A common unit for this data is 1 ppb. In each interval there are five common 
units so the percentage of observations (third column of the table) should be divided by 5 (fourth 
column). 
 
 J-2.3.5  The frequency plot (Figure J-3) and the histogram (Figure J-4) are shown below. 
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Figure J-3.  Frequency plot. 
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Figure J-4.  Histogram. 

 
J-3 Box-and-Whiskers Plots.   
 
 J-3.1  Introduction.  A box-and-whiskers plot (or a box plot ) is a schematic diagram use-
ful for visualizing important statistical quantities such as the center, spread, and distribution of a 
data set. 
 
 J-3.1.1  A box-and-whiskers plot (Figure J-5) is composed of a central box divided by a 
line and two lines extending out from the box called whiskers. The length of the central box—the 
interquartile range (IQR) or the distance from the 25th to the 75th percentile—indicates the spread 
of the bulk of the data (the central 50%) while the length of the whiskers shows the extent of the 
tails in the distribution. The length of each whisker is 1.5 IQR (roughly equal to two standard 
deviations for a normal data set). The width of the box has no particular meaning; the plot can be 
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made quite narrow without affecting its visual impact. The sample median is displayed as a solid 
horizontal line through the box and the sample mean is displayed using a dotted horizontal line. 
 
 J-3.1.2  Box-and-whisker plots are useful for identifying possible outliers as they identify 
values that would be unusually large or small data if the data were assumed to be normally dis-
tributed. Any data points falling outside of the whiskers are displayed as “outliers” by an “o” or 
“x” on the plot. In particular, points falling 3.0 × IQR from the top or bottom of the box are “ex-
treme outliers” displayed by an “x,” while points falling 1.5 × IQR (but within 3.0 × IQR) from 
the top or bottom of the box are “mild outliers” displayed by an “o.” For example, the box plot of 
the lognormal data in Figure J-5 contains three data values that are identified as unusual (two 
“mild outliers” and one “extreme outlier”) if the data were assumed to be from a normal distribu-
tion. Each of the features described in this paragraph has been labeled in Figure J-5 to help you 
identify the most important features of box plots. 
 
 J-3.1.3  A box-and-whiskers plot can also be used to assess the symmetry of the data. If 
the distribution is symmetrical, then the box is divided in two equal halves by the median, the 
whiskers will be the same length and the number of extreme data points will be distributed 
equally on either end of the plot. For instance, the box plot of the normal data in Figure J-5 dis-
plays a highly symmetrical distribution of data. The mean and median are about the same, the 
25th and 75th percentiles are about the same distance from the median, and the whiskers are 
roughly the same length. In contrast, the box plot of the lognormal data in Figure J-5 shows a no-
ticeable positive skew. The mean is greater than the median, the upper whisker appears longer 
than the lower whisker, and several unusually large values are present on the upper end of the 
distribution. To see the variety in plots, the reader is urged to plot project-specific data. 
 
 J-3.1.3.4  Box-and-whiskers plots are extremely useful for visual comparisons of data 
from multiple sources when they are presented side-by-side. For example, separate box plots can 
be constructed for comparing background concentrations to site concentrations. This provides 
simultaneous comparison of the medians and IQRs of several sets of data. Another example 
where box plots can be useful is when trying to determine if an assumption of equal variances is 
valid, by qualitatively comparing the IQRs of two data sets (Appendix M). Directions for gener-
ating a box-and-whiskers plot are contained in Paragraph J-3.2 and an example follows in Para-
graph J-3.3. 
 
 J-3.2  Directions for Generating a Box-and-Whiskers Plot.   
 
 J-3.2.1  Set the vertical scale of the plot based on the maximum and minimum values of 
the data set. Select a width for the box plot keeping in mind that the width is only a visualization 
tool. Label the width W; the horizontal scale then ranges from –½W to ½W. 
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 J-3.2.2  Compute the upper quartile (x0.75, the 75th percentile) and the lower quartile 
(x0.25, the 25th percentile). Compute the sample mean and median. Compute the interquartile 
range (IQR). (Refer to Appendix D to do these computations, as necessary.) 
 
 J-3.2.3  Draw a box through points (–½W, x0.75), (–½W, x0.25), (½W, x0.25), and (½W, 
x0.75). Draw a line from (½W, x0.50) to (–½W, x0.50) and mark point (0, x ) with (+).  
 
 J-3.2.4  Compute the upper end of the top whisker by finding the largest data value xL 
less than x0.75 + 1.5 × IQR. Draw a line from (0, x0.75) to (0, xL). Compute the lower end of the 
bottom whisker by finding the smallest data value xS greater than x0.25 – 1.5 × IQR. Draw a line 
from (0, x0.25) to (0, xS).  
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Figure J-5.  Examples of box-and-whiskers plots. 

 
 J-3.2.5  For all points * 0.75 3.0 IQRLx x x< < + × , place an “o” at the point (0, *x ). These 
points are considered mild outliers. For all points ** 0.75 3.0 IQRx x> + × , place an “x” at the 
point (0, **x ). These points are considered extreme outliers. Likewise, for all 
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points 0.25 *3.0 IQR Sx x x− × < < , place an “o” at the point (0, *x ). Finally, for all 
points ** 0.25 3.0 IQRx x< − × , place an “x” at the point (0, **x ). 
 
 J-3.3  Example of a Box-and-Whiskers Plot.  Consider the following site data of chro-
mium concentrations (mg/kg) in surface soil : 3.08, 3.35, 4.09, 4.13, 4.14, 4.36, 4.37, 4.42, 4.68, 
4.76, 4.78, 4.82, 4.87, 4.89, 4.91, 4.94, 4.96, 4.96, 5.51, 6.4, 10.1, 10.3, 10.6 and 18.5 
 
 J-3.3.1  When generating the plot the width was set at a –0.25 to 0.25 horizontal range. 
Do not forget that the width is only a visualization tool and can be set to any value.  
 
 J-3.3.2  Compute the 75th percentile: 
 
 75.0=p  
 
 1875.24 =×=np  
 
 018 +=+= gjnp  
 
since g = 0 
 

 235.5
2

51.596.4
2

)19()18(
75.0 =

+
=

+
=

XX
x  . 

 
 J-3.3.3  Compute the 25th percentile: 
 
 0.25p =  
 
 625.24 =×=np  
 
 06+=+= gjnp ,  
 
since g = 0 
 

 365.4
2

37.436.4
2

)7()6(
25.0 =

+
=

+
=

XX
x  . 

 
Sample mean = 5.91, sample median = 4.845, interquartile range = 87.0)25(.)75(. =−QQ . 

 
 J-3.3.4  Compute the upper end of the top whisker by finding the largest data value xL 
less than  
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 54.6)87.0(5.1235.55.175.0 =+=×+ IQRx .  
 
So, xL = 6.4. Draw a line from (0, 5.235) to (0, 6.4). Compute the lower end of the bottom 
whisker by finding the smallest data value xS greater than 
 
 06.3)87.0(5.1365.45.125.0 =−=×− IQRx . 
 
So, Sx  = 3.08. Draw a line from (0, 4.365) to (0, 3.08). 
 
 J-3.3.5  There are no points, *x , greater than 4.6=Lx but less than  
 

 845.7)87.0(0.3235.50.375.0 =+=×+ IQRx  
 

so no points are considered mild outliers. For all points  
 
 ** 0.75 3.0 7.845x x IQR> + × =   
 
place an “x” at the point (0, x**). These points are considered extreme outliers. There are no 
points less than xS = 3.08 so no points are drawn below the bottom whisker. Figure J-6 shows the 
box-and-whiskers plot. 
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Figure J-6.  Box-and-whiskers plot. 
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J-4 Quantile Plots. 
 
 J-4.1  Introduction.  A quantile plot is a graph of the quantiles of data. It plots each point 
according to the fraction of the points it exceeds. It is a graphical representation of the data that 
is easy to construct, easy to interpret, and makes no assumptions about a model for the data. 
 
 J-4.1.1  A quantile plot displays every data point ranging from the lowest value to the 
highest value; it is a graphical representation of the data instead of a summary of the data. The 
advantage of using a quantile plot is that the analyst does not have to make any arbitrary choices 
regarding the data to construct a quantile plot (such as selecting the cell sizes for a making a his-
togram).  
 
 J-4.1.2  The vertical axis of the quantile plot is the measured concentration, and the hori-
zontal axis of the quantile plot is the percentile of the data distribution. Directions for developing 
a quantile plot are given in Paragraph J-4.2 and an example follows in Paragraph J-4.3. 
 
 J-4.1.3  A quantile plot can be used to read quantile information (the median, quartiles, 
and the interquartile range) because each data value is plotted against the percentage of the data 
with that value or less. In addition, the plot can be used to determine the density of the data 
points: Are all the data values close to the center with relatively few values in the tails or are 
there a large number of values in one tail with the rest evenly distributed? The density of the data 
is displayed through the slope of the graph. A flat slope indicates a large number of data values; 
the graph rises slowly. A steep slope indicates a small number of data values; the graph rises 
quickly. A quantile plot can be used to determine if the data are skewed or if they are symmetri-
cal. Figure J-7 shows examples of three quantile plots. If the data are symmetrical, then the top 
portion of the graph will stretch to the upper right corner in the same way the bottom portion of 
the graph stretches to the lower left, creating an s-shape similar to Figure J-7a. A quantile plot of 
data that are skewed to the right is steeper at the top right than the bottom left, as shown in Fig-
ure J-7b. A quantile plot of data that are skewed to the left increases sharply near the bottom left 
of the graph as shown in Figure J-7c.  
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Figure J-7.  Examples of quantile plots. 
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 J-4.2  Directions for Developing a Quantile Plot.  Let ( ) ( ) ( )nxxx ,,, 21 K  represent the n 
data points ordered from least to greatest.  
 

 J-4.2.1  For each i from 1 to n, compute the fraction if  = (i – 0.5)/n. The quantile plot is a 
plot of the pairs ( )(, ii xf ). 
 
 J-4.2.2  An example is given below in Paragraph J-4.3. (There are a number of ways to 
calculate the quantile fi. Software that performs quantile plots may not necessarily use the same 
formula presented in Paragraph J-4.2 to calculate the quantile. For example, for the Weibull 
method fi = i/(n+1).)  

 
 J-4.3  Generating a Quantile Plot.  Consider the following 108 data points for benzene 
groundwater results in μg/L: 0.0292, 0.0300, 0.0300, 0.0300, 0.0353, 0.0353, 0.0353, 0.0353, 
0.0353, 0.0353, 0.0375, 0.0375, 0.0375, 0.0375, 0.0375, 0.0375, 0.0375, 0.0375, 0.0375, 0.0401, 
0.0401, 0.0401, 0.0401, 0.0401, 0.0401, 0.0444, 0.0465, 0.0465, 0.0465, 0.0465, 0.0465, 0.0465, 
0.0465, 0.0465, 0.0469, 0.0469, 0.0469, 0.0480, 0.0504, 0.0504, 0.0504, 0.0548, 0.0585, 0.0605, 
0.0605, 0.0605, 0.0641, 0.0641, 0.0641, 0.0641, 0.0759, 0.0759, 0.0759, 0.0759, 0.0759, 0.0759, 
0.0786, 0.0786, 0.0855, 0.0970, 0.0971, 0.1430, 0.2220, 0.2350, 0.3080, 0.4840, 0.6350, 0.7590, 
0.8130, 1.1500, 1.7200, 1.7800, 1.8400, 1.8500, 1.9200, 2.0000, 2.0100, 2.1700, 2.1900, 2.3100, 
2.4600, 2.6800, 2.7500, 2.9500, 3.4200, 3.4500, 3.7900, 4.3000, 5.4700, 5.7700, 5.8700, 6.1700, 
6.9100, 7.2400, 7.5600, 8.3400, 8.6400, 9.3300, 11.0000, 11.1000, 12.2000, 14.1000, 17.0000, 
20.2000, 21.8000, 29.1000, 36.7000 and 44.5000. 
 
 J-4.3.1  The data, ordered from smallest to largest, x(i), are shown in the first column of 
Table J-2 and the ordered number for each observation, i, is shown in the second column. The 
third column displays the values fi for each i where fi = (i – 0.5)/n. 
 
Table J-2 
Quantile Plot Data 

)(ix  i 
if  

0.0290 1 0.0046 
0.0300 2 0.014 
0.0300 3 0.023 

. . . 

. . . 

. . . 
29.100 106 0.9769 
36.700 107 0.9861 
44.500 108 0.9954 

 
 J-4.3.2  The pairs ),( ii xf  are then plotted to yield the quantile plot in the Figure J-8. 
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J-5 Normal Probability Plots (Quantile-Quantile Plots).  There are two types of quantile-
quantile plots or q-q plots: an empirical quantile-quantile plot and a theoretical quantile-quantile 
plot. A normal probability plot is an extension of these q-q plots. 
 
 J-5.1  Empirical Quantile-Quantile Plot.  A plot of the quantiles of two variables (e.g., 
the quantiles of X versus the quantiles of Y). 

 
 J-5.2  Theoretical Quantile-Quantile Plot.  A plot of quantiles of a set of data against the 
quantiles of a specific theoretical probability distribution. 
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Figure J-8.  Example of a quantile plot. 

 
 J-5.3  Normal Probability Plot.  A theoretical quantile-quantile plot where the quantiles 
of a data set are plotted against the quantiles of the normal distribution. 
 
 J-5.4  Introduction.  The following discussion will focus on the plot most commonly used 
for environmental data—the normal probability plot (the normal q-q plot); however, the discus-
sion also holds for other q-q plots. The normal probability plot is used to roughly determine how 
well the data set is modeled by a normal distribution.  
 
 J-5.4.1  A normal probability plot, as defined above, is the graph of the quantiles of a data 
set against the quantiles of the normal distribution (see Figure J-9). If the graph is linear, the data 
may be normally distributed as shown in Figure J-9a. If the graph is not linear, the departures 
from linearity give important information about how the data distribution deviates from a normal 
distribution. Further, the graph may be used to determine the degree of symmetry (or asymmetry) 
displayed by the data. If the data in the upper tail fall above and the data in the lower tail fall be-
low the quartile line, the data are too slender to be well modeled by a normal distribution (Figure 
J-9b); there are fewer values in the tails of the data set than what is expected from a normal dis-
tribution. If the data in the upper tail fall below and the data in the lower tail fall above the quar-
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tile line, then the tails of the data are too heavy to be well modeled using a normal distribution 
(Figure J-9c); there are more values in the tails of the data than what is expected from a normal 
distribution.  
 
 J-5.4.2  A normal probability plot can be used to identify potential outliers and extreme 
values. Data values much larger or much smaller than the rest will cause the other data values to 
be compressed into the middle of the graph, ruining the resolution. In addition, a normal prob-
ability plot is a useful technique for identifying irregularities in the data, especially in the tails, 
when compared to a certain distribution.  
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Figure J-9.  Examples of normal probability plots. 
 
 J-5.4.3  Directions for constructing a normal probability plot are presented in Paragraph 
J-5.5, followed by an example in Paragraph J-5.6. 
 
 J-5.5  Directions for Constructing a Normal Probability Plot. Let x(1), x(2),..., x(n) repre-
sent the n data points ordered from least to greatest. For each i, compute the fraction fi = (i – 
0.5)/n and find the corresponding quantile for the standard normal distribution, Zp, in Table B-15 
of Appendix B. The normal probability plot is a plot of the pairs (Zp, x(i)). If the data are normally 
distributed, the points will fall approximately on a straight line. The slope of the line is an esti-
mate the population standard deviation and the y-intercept (at Z = 0) is an estimate of the popula-
tion mean, because X = σ Z + μ. 
 
 J-5.6  Example for Constructing a Normal Probability Plot.  Again, consider the follow-
ing results of benzene concentrations (in μg/L) in groundwater: 0.0292, 0.0300, 0.0300, 0.0300, 
0.0353, 0.0353, 0.0353, 0.0353, 0.0353, 0.0353, 0.0375, 0.0375, 0.0375, 0.0375, 0.0375, 0.0375, 
0.0375, 0.0375, 0.0375, 0.0401, 0.0401, 0.0401, 0.0401, 0.0401, 0.0401, 0.0444, 0.0465, 0.0465, 
0.0465, 0.0465, 0.0465, 0.0465, 0.0465, 0.0465, 0.0469, 0.0469, 0.0469, 0.0480, 0.0504, 0.0504, 
0.0504, 0.0548, 0.0585, 0.0605, 0.0605, 0.0605, 0.0641, 0.0641, 0.0641, 0.0641, 0.0759, 0.0759, 
0.0759, 0.0759, 0.0759, 0.0759, 0.0786, 0.0786, 0.0855, 0.0970, 0.0971, 0.1430, 0.2220, 0.2350, 
0.3080, 0.4840, 0.6350, 0.7590, 0.8130, 1.1500, 1.7200, 1.7800, 1.8400, 1.8500, 1.9200, 2.0000, 
2.0100, 2.1700, 2.1900, 2.3100, 2.4600, 2.6800, 2.7500, 2.9500, 3.4200, 3.4500, 3.7900, 4.3000, 
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5.4700, 5.7700, 5.8700, 6.1700, 6.9100, 7.2400, 7.5600, 8.3400, 8.6400, 9.3300, 11.0000, 
11.1000, 12.2000, 14.1000, 17.0000, 20.2000, 21.8000, 29.1000, 36.7000 and 44.5000. 
 
 J-5.6.1  The data, ordered from smallest to largest, are shown below in the first column of 
the table (x(i)) and the ordered number for each observation (i) is shown in the second column. 
The third column displays the values fi for each value of i, where fi = (i – 0.5)/n. The fourth col-
umn displays the corresponding percentiles of the standard normal distribution, Zp (p = fi).  
 
Table J-3 
Normal Probability Data 

)(ix  i 
if  pZ  

0.0292 1 0.0046 –2.60 
0.0300 2 0.014 –2.20 
0.0300 3 0.023 –1.99 

. . . . 

. . . . 

. . . . 
29.100 106 0.9769 1.99 
36.700 107 0.9861 2.20 
44.500 108 0.9954 2.61 

 
 J-5.6.2  The pairs (Zp, x(i)) are then plotted to yield the normal probability plot shown in 
Figure J-10. Because this plot is clearly nonlinear, these data are unlikely to be from a normal 
distribution. 
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Figure J-10.  Example of a normal probability plot. 
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J-6 Empirical Quantile-Quantile Plots.  An empirical quantile-quantile (q-q) plot involves 
plotting the quantiles of two data variables against each other. This plot is used to compare dis-
tributions of two or more variables; for example, the analyst may wish to compare the distribu-
tion of lead and iron samples from a drinking water well. This plot is similar in concept to the 
theoretical quantile-quantile plot and yields similar information, plotting the distribution of two 
variables instead of the distribution of one variable in relation to a fixed distribution.  
 
 J-6.1  Introduction.  If the distributions are roughly the same, the graph will be approxi-
mately linear; the slope will be nearly one and the intercept will be nearly zero. If the distribu-
tions are not the same, then the graph will not necessarily be linear. Even if the graph is not 
linear, the departures from linearity give important information about how the two data distribu-
tions differ. For example, a q-q plot can be used to compare the tails of the two data distributions 
in the same manner a normal probability plot is used to compare the tails of the data to the tails 
of a normal distribution. In addition, potential outliers (from the paired data) may be identified 
on this graph. Directions for constructing an empirical q-q plot are presented in Paragraph J-6.2 
followed by an example in Paragraph J-6.3. 
 
 J-6.2  Directions for Constructing an Empirical q-q Plot.  Let x1, x2,..., xn represent n data 
points of one variable and let y1, y2,..., ym  represent a second variable of m data points.  
 
 J-6.2.1  Let )(ix , for i = 1 to n, be the first sample listed in order from smallest to largest 
so that: 
 
 )1(x  (i = 1) is the smallest 
 
 )2(x  (i = 2) is the second smallest 
 

… 
 
 )(nx  (i = n) is the largest.  
 
 J-6.2.2  Let )(iy , for i = 1 to m, be the second sample listed in order from smallest to larg-
est so that: 
 
 )1(y  (i = 1) is the smallest 
 
 )2(y  (i = 2) is the second smallest 
 

... 
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 )(my  (i = m) is the largest. 
 
 J-6.2.3  If the two variables have the same number of observations, then an empirical q-q 
plot of the two variables is simply a plot of the ordered values of the variables. Because n = m, 
replace m by n. A plot of the following pairs is an empirical q-q plot: 
 
 ( )1()1( , yx ), ( )2()2( , yx ), ..., ( )()( , nn yx ) . 
 
 J-6.2.4  If the two variables have a different number of observations ( mn > ), then the 
empirical q-q plot will consist of m (the smaller number) pairs. The empirical q-q plot will then 
be a plot of the ordered y values against interpolated x values. For i = 1, i = 2, ..., i = m, 
let:  
 
 5.0)5.0)(/( +−= imnv   
 
and separate the result into the integer part and the fractional part, i.e., let: 
 
 gjv +=  
 
where j is the integer part and g is the fraction part.  
 
 J-6.2.5  If g = 0, plot the pair ( )()( , ii xy ). Otherwise, plot the pair ( )( ))1(1, ++− jji xgxgy . 
A plot of these pairs is an empirical q-q plot.  
 
 J-6.3  Example for Constructing an Empirical q-q Plot.  Consider the following arsenic 
concentrations in subsurface soil samples (mg/kg): 2.15, 2.26, 2.37, 2.18, 1.93, 2.06, 2.00, 1.42, 
1.31, 1.95, 2.88, 1.71, 1.92, 2.33, 1.55, 1.75, 2.09, 2.38, 2.11, 2.33, 1.98, 1.55, 1.76, 1.31, 2.34, 
1.22, 1.81, 1.91, 2.31, 2.10, 1.89, 1.91, 1.49, 1.79, 2.71, 1.70, 1.93, 1.64, 1.94, 3.15, 2.32, 1.31, 
1.97 and 1.48. And the following chromium concentrations in subsurface soil samples (mg/kg) 
are: 4.60, 5.29, 4.26, 5.28, 4.53, 5.74, 5.86, 3.84, 2.95, 5.17, 4.80, 4.53, 4.01, 5.91, 3.96, 4.81, 
5.27, 5.99, 4.60, 5.51, 4.72, 3.56, 4.22, 3.91, 5.81, 4.48, 5.10 ,4.94, 4.76, 4.62, 4.72, 4.73, 3.21, 
4.14, 4.85, 4.25, 5.09, 3.68, 5.12, 6.60, 6.19, 3.15, 4.11 and 2.80. 
 
 J-6.3.1  An empirical q-q plot will be used to compare the distributions of these two ana-
lytes. As there are 44 observations of arsenic and 44 observations of chromium, the case for m = 
n will be used. Therefore, for i = 1, 2, ..., 44, compute: 
 
 ( )1()1( , yx ), ( )2()2( , yx ), ... ( )44()44( , yx ) . 
 



EM 1110-1-4014 
15 Jan 07 

 

J-17 

 J-6.3.2  These pairs are plotted below, along with the best fitting regression line, as 
shown in Figure J-11. 
 
J-7 Plots for Temporal Data. 
 
 J-7.1  Introduction.  Data collected over specific time intervals (such as monthly, bi-
weekly, or hourly) have a temporal component. For example, air monitoring measurements of a 
pollutant may be collected once a minute or once a day; water quality monitoring measurements 
of a contaminant level may be collected weekly or monthly. An analyst examining temporal data 
may be interested in the trends over time, correlation among time periods, or cyclical patterns, or 
all three. Some graphical representations specific to temporal data are the time plot, correlogram, 
and variogram.  
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Figure J-11.  Empirical q-q plot. 

 
 J-7.1.1  Time Plot.  This is a plot of time versus some variable (e.g., concentration). 
 
 J-7.1.2  Time Series Plot.  This is a time plot in which measurements of a variable are 
taken at regular, fixed intervals over time. 
 
 J-7.1.3  Correlogram.  This is a plot that displays serial correlation when the data are col-
lected at equally spaced time (or distance) intervals. 
 
 J-7.1.4  Variogram.  This is a plot that displays the same information as a correlogram 
except that the data may be based on unequally spaced time (or distance) intervals. Further dis-
cussion of the variogram is contained in Appendix Q. 
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 J-7.2  Discussion.  Data collected at regular time intervals are called time series. The 
graphical representations presented in this Paragraph are recommended for all data that have a 
temporal component regardless of whether formal statistical time series analysis will be used to 
analyze the data. If the analyst uses a time series methodology or trend analyses such as those 
described in Appendix P, the graphical representations presented below will play an important 
role in this analysis. If the analyst decides not to use time series methodologies, these representa-
tions will help identify temporal patterns that need to be accounted for in the analysis of the data. 
 
 J-7.2.1  The analyst examining temporal environmental data may be interested in cyclic 
trends, directional trends, serial correlation, and stationarity.  
 
 J-7.2.1.1  Cyclic Trend.  This is a pattern in the data (e.g., attributable to seasonal 
changes) that repeats over time. 
 
 J-7.2.1.2  Directional Trend.  This is a downward or upward trend in the data. 
 
 J-7.2.1.3  Serial Correlation.  This is a measure of the extent to which successive obser-
vations are related. 
 
 J-7.2.1.4  Stationarity.  This describes the situation when the data looks the same over all 
time periods. 
 
 J-7.2.2  Cyclic trends repeat over time; the data rise and fall regularly over one or more 
time periods. These trends may be large scale, such as a yearly trend where the data show the 
same pattern of rising and falling over each year, or the trends may be small scale, such as a 
daily trend where the data show the same pattern for each day. Directional trends are downward 
or upward trends in the data, of importance to environmental applications where contaminant 
levels may be increasing or decreasing. Serial correlation is a measure of the extent to which 
successive observations are related. If they are related, statistical quantities calculated without 
accounting for it may be biased.  
 
 J-7.2.3  Another issue for temporal data is stationarity. Stationary data look the same over 
all time periods. Directional or cyclical trends and increasing (or decreasing) variability among 
the data imply that the data are not stationary. Temporal data are sometimes used in environ-
mental projects along with a statistical hypothesis test to determine if contaminant levels have 
changed over time. If the hypothesis test does not account for temporal trends or seasonal varia-
tions, the data must achieve a steady state before the hypothesis may be tested. The data must be 
essentially the same for comparable periods of time both before and after the hypothesized time 
of change.  
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 J-7.2.4  Sometimes multiple observations are taken in each time period. For example, the 
sampling design may specify selecting five samples every Monday for 3 months. If this is the 
case, the time plot may be used to display the data, display the mean weekly level, display a con-
fidence interval for each mean, or display a confidence interval for each mean with the individual 
data values. A time plot of all the data can be used to determine if the variability for the different 
time periods changes. A time plot of the means can be used to determine if the means are chang-
ing between time periods. In addition, each time period may be treated as a distinct variable and 
the methods for plots for two or more variables may be applied. 
 
 J-7.3  Time Plots.  One of the simplest plots to generate that provides a large amount of 
information is a time plot. This is a plot of the data that makes it easy to identify large- and 
small-scale trends over time. Small-scale trends show up on a time plot as fluctuations in smaller 
(or shorter) time periods. For example, ozone levels over the course of one day typically rise un-
til the afternoon, then decrease, and this process is repeated every day. Larger scale trends, such 
as seasonal fluctuations, appear as regular rises and drops in the graph. For example, ozone lev-
els tend to be higher in the summer than in the winter, so ozone data tend to show both a daily 
trend and a seasonal trend. A time plot can show directional trends and increased variability over 
time. Possible outliers may also be easily identified using a time plot. Figure J-12 displays two 
examples of time plots. Figure J-12a demonstrates an upward trend, while Figure J-12b shows a 
downward trend superimposed with cyclical behavior. 
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Figure J-12.  Examples of time plots. 
 
 J-7.3.1  Discussion.  A time plot is constructed by numbering the observations in order by 
time. The time ordering is plotted on the horizontal axis and the corresponding observation is 
plotted on the vertical axis. Although the points plotted on a time plot may be joined by lines, it 
is recommended that the plotted points not be connected to avoid creating a false sense of conti-
nuity. The scaling of the vertical axis of a time plot is of some importance. A wider scale tends to 
emphasize large-scale trends, whereas a smaller scale tends to emphasize small-scale trends. Us-
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ing the ozone example above, a wide scale would emphasize the seasonal component of the data, 
whereas a smaller scale would tend to emphasize the daily fluctuations. Directions for construct-
ing a time plot are contained in Paragraph J-7.3.2 along with an example. 
 
 J-7.3.2  Directions for Generating a Time Plot.  Let x1, x2,..., xn represent n data points 
listed in order by time, i.e., the subscript represents the ordered time interval. A plot of the pairs 
(i, xi) is a time plot of this data. 
 
 J-7.3.2.1  Consider the following 15 benzene concentrations (μg/L) measured in ground-
water (listed in order by day): 12.200, 3.790, 3.420, 5.470, 0.813, 1.840, 7.560, 4.300, 2.680, 
6.170, 0.635, 2.190, 1.720, 1.150 and 0.484. 
 
 J-7.3.2.2  By labeling day 1 as 1, day 2 as 2, and so on, a time plot is constructed by plot-
ting the pairs (i, xi) where: i = the number of the day, and xi = the concentration level.  
 
 J-7.3.2.3  A time plot of these data is shown in Figure J-13. 
 
 J-7.4  Plot of the Autocorrelation Function (Correlogram). 
 
 J-7.4.1  Discussion.  Serial correlation is a measure of the extent to which successive ob-
servations are related. If successive observations are related, either the data must be transformed 
or this relationship must be accounted for in the analysis of the data. The correlogram is a plot 
that is used to display serial correlation when the data are collected at equally spaced time inter-
vals. The autocorrelation function is a summary of the serial correlations of data. The first auto-
correlation coefficient (r1) is the correlation between all points that are one time unit (k1) apart; 
the second autocorrelation coefficient (r2) is the correlation between points that are two time 
units (k2) apart; and so on. A correlogram (Figure J-14) is a plot of the sample autocorrelation co-
efficients in which the values of k versus the values of rk  are displayed.  
 
 J-7.4.1.1  The correlogram is used for modeling time series data and helps to determine if 
serial correlation is large enough to create problems in the analysis of temporal data using other 
methodologies. A quick method for determining if serial correlation is large is to place horizontal 
lines at ±2/n, where n is the number of samples on the correlogram (shown as horizontal lines on 
Figure J-14). Autocorrelation coefficients that exceed this value require further investigation. 
 
 J-7.4.1.2  In application, the correlogram is only useful for data at equally spaced inter-
vals. To relax this restriction, a variogram may be used instead. The variogram displays the same 
information as a correlogram except that the data may be based on unequally spaced time (or dis-
tance) intervals. For more information on the construction and uses of the variogram, consult a 
statistician.  
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 J-7.4.1.3  Directions for constructing a correlogram are contained in Paragraph J-7.4.2, 
followed by example calculations in Paragraph J-7.4.3.  
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Figure J-13.  Example time plot. 
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Figure J-14.  Correlogram for data in Paragraph J-7.4.2. 
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 J-7.4.2  Directions for Constructing a Correlogram.  Let x1, x2,..., xn represent the data 
points ordered by time for equally spaced time points, i.e., x1 was collected at time 1, x2 was col-
lected at time 2, and so on.  
 
 J-7.4.2.1  To construct a correlogram, first compute the sample autocorrelation coeffi-
cients. So for k = 0,1, ….., compute rk where 
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 J-7.4.2.2  Once kr  has been computed, a correlogram is the graph ),( krk  for k = 0, 1, …  
 
 J-7.4.2.3  Compute up to approximately k = n/6.  
 
 J-7.4.2.4  Also, note that 10 =r .  
 
 J-7.4.2.5  Finally, place horizontal lines at 
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 J-7.4.3  Example for Constructing a Correlogram.  A correlogram will be constructed us-
ing the following three benzene concentrations in groundwater, collected monthly—month 1: 
11.10 ppb, month 2: 2.46 ppb, month 3: 5.77 ppb. Although a correlogram would not typically be 
constructed when only three data points are available, only three data points are used here so that 
all computations may be shown. The rules that up to n/6 autocorrelation coefficients should be 
computed will be broken for illustrative purposes. The first step to constructing a correlogram is 
to compute the sample mean (Appendix D), which is 6.44 for the three points. Then, 
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Remember, r0 = 1. Thus, the correlogram of these data is a plot of (0, 1) (1, –0.418) and (2,  
–0.082) with two horizontal lines at (±1.15). This graph is shown in Figure J-14. In this case, it 
appears that the observations are not serially correlated because all of the correlogram points are 
within the bounds of (±1.15).  
 
 J-7.4.4  Multiple Observations Per Time Period.  In environmental data collection, multi-
ple observations are sometimes taken for each time period. For example, the data collection de-
sign may specify collecting and analyzing five samples from a drinking well every Wednesday 
for 3 months. If this is the case, a time plot may be used to display the data, display the mean 
weekly level, display a confidence interval for each mean, or display a confidence interval for 
each mean with the individual data values. A time plot of all the data will allow the analyst to de-
termine if the variability for the different collection periods changes. A time plot of the means 
will allow the analyst to determine if they are changing between the collection periods. In addi-
tion, each collection period may be treated as a distinct variable and the methods applied as de-
scribed in the section on plots for two or more variables (Paragraph J-9). 
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J-8 Plots for Spatial Data. 
 
 J-8.1  Introduction.  The graphical representations of the preceding Paragraphs may also 
be useful for exploring spatial data. An analyst examining spatial data may be interested in locat-
ing  extreme values, overall spatial trends, and the degree of continuity among neighboring loca-
tions. Graphical representations for spatial data include postings, symbol plots, and correlograms 
(the correlograms would be generated by collecting samples at equally spaced sampling loca-
tions). The graphical representations presented below are recommended for all spatial data re-
gardless of whether or not geostatistical methods will be used to analyze it. They will help 
identify spatial patterns that need to be accounted for in the analysis of the data. If geostatistical 
methods such as kriging are used to analyze the data, these methods will play an important role. 
 
 J-8.2  Posting Plots.  A posting plot (Figure J-15) is a map of data locations along with 
corresponding data values. Data posting may reveal obvious errors in data location and identify 
data values that may be in error. The graph of the sampling locations gives the analyst an idea of 
how the data were collected (i.e., the sampling design), areas that may have been inaccessible, 
and areas of special interest to the decision-maker, which may have been heavily sampled. It is 
often useful to mark the highest and lowest values of the data to see if there are any obvious 
trends. If all of the highest concentrations fall in one region of the plot, the analyst may consider 
some method such as post-stratifying the data (stratification after the data are collected and ana-
lyzed) to account for this fact in the analysis. Directions for generating a posting of the data (a 
posting plot) are contained in Paragraph J-8.4. 
 
 J-8.3  Symbol Plots.  For large amounts of data, a posting plot may not be feasible and a 
symbol plot (Figure J-16) may be used. A symbol plot is the same as a posting plot of the data, 
except that instead of posting individual data values, symbols are posted for ranges of the data 
values. For example, the symbol '0' could represent all concentration levels less than 100 ppm, 
the symbol '1' could represent all concentration levels between 100 ppm and 200 ppm, etc. Direc-
tions for generating a symbol plot are contained in Paragraph J-8.4. 
 
 J-8.4  Directions for Generating a Posting Plot and Symbol Plot with an Example. 
 
 J-8.4.1  Directions.  On a map of the site, plot the location of each sample. At each loca-
tion, either indicate the value of the data point (a posting plot) or indicate by an appropriate sym-
bol (a symbol plot) the data range within which the value of the data point falls for that location, 
using one unique symbol per data range. The Posting plot and the Symbol plot are displayed as 
Figures J-15 and J-16. 
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Figure J-15.  Posting plot. 

 
 J-8.4.2  Example.  The spatial data displayed in Table J-4 contains both a location (nor-
thing and easting) and a concentration level C. The data range from 4.0 to 35.5 so units of 5 were 
chosen to group the data.  
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Figure J-16.  Symbol plot. 
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Table J-4 
Spatial Data 

Range Symbol Range Symbol 
0.0–9.9 A 40.0–49.9 E 
9.9–19.9 B 50.0–59.9 F 

20.0–29.9 C 60.0–69.9 G 
30.0–39.9 D 70.0–79.9 H 

 
Northing Easting C Symbol Northing Easting C Symbol 

25.0 0.0 2.53 A 15.0 15.0 2.57 A 
25.0 5.0 1.81 A     
25.0 10.0 3.36 A     
25.0 15.0 1.55 A     
20.0 0.0 1.66 A     
20.0 5.0 1.52 A     
20.0 10.0 20.60 C     
20.0 15.0 70.10 H     
15.0 0.0 5.28 A     
15.0 5.0 8.67 A     
15.0 10.0 1.72 A     

 
 J-8.5  Other Spatial Graphical Representations.  The two plots discussed above, posting 
and symbol, provide information on the location of extreme values and spatial trends. The graphs 
below provide another item of interest to the data analyst, continuity of the spatial data. The 
graphical representations are not described in detail because they are mostly used for preliminary 
geostatistical analysis. These graphs can be difficult to develop and interpret. For more informa-
tion on these, consult a statistician. 
 
 J-8.5.1  An h scatter plot is a plot of all possible pairs of data whose locations are sepa-
rated by a fixed distance in a fixed direction (indexed by h). For example, an h scatter plot could 
be based on all the pairs whose locations are 1 meter apart in a southerly direction. An h scatter 
plot is similar in appearance to a scatter plot. The shape of the spread of the data in an h scatter 
plot indicates the degree of continuity among data values a certain distance apart in a particular 
direction. If all the plotted values fall close to a fixed line, then the data values at locations sepa-
rated by a fixed distance in a fixed location are very similar. As data values become less and less 
similar, the spread of the data around the fixed line increases outward. The data analyst may con-
struct several h scatter plots with different distances to evaluate the change in continuity in a 
fixed direction. 
 
 J-8.5.2  A correlogram is a plot of the correlations of the h scatter plots. Because the plot 
only displays the correlation between the pairs of data whose locations are separated by a fixed 
distance in a fixed direction, it is useful to have a graph of how these correlations change for dif-
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ferent separation distances in a fixed direction. The correlogram is such a plot and allows the 
analyst to evaluate the change in correlation in a fixed direction as a function of the distance be-
tween two points. A spatial correlogram is similar in appearance to a temporal one. It spans op-
posite directions so that the correlogram with a fixed distance of due north is identical to the 
correlogram with a fixed distance of due south. Correlograms for spatial data are related to the 
semivariograms discussed in Appendix Q. 
 
 J-8.5.3  Contour plots are used to reveal overall spatial trends in the data by interpolating 
data values between sample locations. Most contour procedures depend on the density of the grid 
covering the sampling area (higher density grids usually provide more information than lower 
densities). A contour plot gives one of the best overall pictures of the important spatial features. 
However, contouring often requires that the actual fluctuations in the data values be smoothed, 
so that many spatial features of the data may not be visible. The contour map should be used 
with other graphical representations of the data and requires expert judgment to adequately inter-
pret the findings. 
 
J-9 Visualizing Higher Dimensional Data: Plots for Two or More Variables. 
 
 J-9.1  Introduction.  To compare and contrast several variables, collections of the single 
variable displays described previously are useful. For example, the analyst may generate side-by-
side box-and-whiskers plots or histograms for each variable using the same axis for all of the 
variables.  
 
 J-9.1.1  Figure J-17 illustrates side-by-side box-and-whiskers plots for naphthalene con-
centrations at various groundwater-monitoring wells at a given site.  
 
 J-9.1.2  In addition, the number of detected observations over the total number of obser-
vations has been placed towards the top of the graph. Separate plots for each variable may be 
overlaid on one graph, such as overlaying quantile plots for each variable on one graph. Another 
useful technique for comparing two variables is to place the histograms back to back. In addition, 
some special plots have been developed to display two or more variables; these allow compari-
son and contrast of individual data points of all the variables. These plots are described below. 
 
 J-9.2  Plots for Individual Data Points.   
 
 J-9.2.1  As it is difficult to visualize data in more than two or three dimensions, most of 
the plots developed to display multiple variables for individual data points involve representing 
each variable as a distinct piece of a two-dimensional figure. Such plots include Profiles, Glyphs, 
and Stars (Figure J-18). These graphical representations start with a specific symbol to represent 
each data point, then modify the various features of the symbol in proportion to the magnitude of 
each variable. The proportion of the magnitude is determined by letting the minimum value for 
each variable be of length zero, the maximum be of length one. The remaining values of each 
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variable are then proportioned, based on the magnitude of each value in relation to the minimum 
and maximum. 
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Figure J-17.  Concentrations of naphthalene at site A wells. 
 

 J-9.2.2  A profile plot starts with a line segment of a fixed length. Then, lines spaced an 
equal distance apart and extended perpendicular to the line segment represent each variable. A 
glyph plot uses a circle of fixed radius. From the perimeter, parallel rays whose sizes are propor-
tional to the magnitude of the variable extend from the top half of the circle. A star plot starts 
with a point where rays spaced evenly around the circle represent each variable and a polygon is 
then drawn around the outside edge of the rays. 

 
 

 
 

Figure J-18. Graphical representations of multi-
ple variables. 
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 J-9.3  Scatter Plot.  For data sets consisting of paired observations where two or more 
continuous variables are measured for each sampling point, a scatter plot is one of the most pow-
erful tools for analyzing the relationship between two or more variables. Scatter plots are easy to 
construct for two variables (Figure J-19) and many computer graphics packages can construct 
three-dimensional scatter plots. Directions for constructing a scatter plot for two variables are 
given in Paragraph J-9.4 along with an example in Paragraph J-9.5. 
 
 J-9.3.1  A scatter plot clearly shows the relationship between two variables. Both poten-
tial outliers from a single variable and potential outliers from the paired variables may be identi-
fied on this plot. A scatter plot also displays the correlation between the two variables. Scatter 
plots of highly linearly correlated variables cluster compactly around a straight line. In addition, 
nonlinear patterns may be obvious on a scatter plot. For example, consider two variables where 
one is approximately equal to the square of the other. A scatter plot of these data would display a 
U-shaped (parabolic) curve. Another important feature that can be detected using a scatter plot is 
any clustering effect among the data. 
 
 J-9.3.2  Additional information can be placed in a scatter plot. Labels can be placed on 
each value in the scatter plot to identify the sample location of a value. Different colors or sym-
bols may be used to identify unique groupings of the data. For example, the scatter plot data may 
contain concentrations from multiple sampling events, with a unique symbol used to identify 
each event. This will show trends in concentrations as well as distinguishing sampling events. 
 
 J-9.4  Directions for Generating a Scatter Plot.  Let x1, x2,..., xn represent one variable of 
n data points and let y1, y2,..., yn represent a second variable of the same n data points. The paired 
data can be written as (xi, yi) for i = 1,..., n. To construct a scatter plot, plot the first variable 
along the horizontal axis and the second variable along the vertical axis. It does not matter which 
variable is placed on which axis. 
 
 J-9.5  Example of a Scatter Plot.  A scatter plot is prepared for arsenic and chromium 
concentrations in subsurface soil at Site A, using the data in Table J-5. Arsenic values are shown 
on the horizontal axis and chromium values are displayed on the vertical axis of Figure J-19. 
 
 J-9.6  Extensions of the Scatter Plot.  It is easy to construct a two-dimensional scatter plot 
manually. Many software packages can construct useful two- and three-dimensional scatter plots. 
However, it is difficult to construct and interpret a scatter plot for more than three variables, so 
several graphical representations have been developed that extend the idea of a scatter plot to 
data consisting of two or more variables. 
 
 



EM 1110-1-4014 
15 Jan 07 
 

J-30 

Arsenic at Site A

C
hr

om
iu

m
 a

t S
ite

 A

1.5 2.0 2.5 3.0

3
4

5
6

 
Figure J-19.  Example of a scatter plot. 

 
 J-9.7  Scatter Plot Matrix.  A scatter plot matrix is a useful method for extending scatter 
plots to higher dimensions. In this case, a scatter plot is developed for all possible pairs of the 
variables that are then displayed in a matrix format. This method is easy to use and is a concise 
method of displaying the individual scatter plots. However, this method does not contain infor-
mation on three-way or higher interactions between variables. An example of a scatter plot ma-
trix is contained in Figure J-20. 
 
 J-9.8  Side-by-Side Scatter Plot.  A form of scatter plot, called a side-by-side scatter plot, 
is designed in a manner similar to the side-by-side box-and-whiskers plots presented earlier. 
Such scatter plots are developed using the horizontal axis as a label for each variable and using 
the vertical axis as the range of values for the variables. Figure J-21 illustrates a side by side 
scatter plots for the same data presented in Figure J-5. In Figure J-21, the y-axis is the range of 
concentrations for naphthalene and the x-axis represents the wells that were sampled during the 
site investigation. Because the wells were sampled over several years, different symbols are used 
to represent each year—triangles represent 1998, squares represent 1999, and circles represent 
2000. In addition, because there are detected and non-detected results in the data, open symbols 
were used for non-detected values and closed symbols were used for detected values. At the top 
of the graph, a ratio is shown that states the number of detected observations over the total num-
ber of observations for each well sampled. A side-by-side scatter plot can be a useful tool in 
comparing and contrasting concentrations of a specific chemical at various data points (e.g., dif-
ferent wells at a particular site). 
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Table J-5 
Arsenic and Chromium Concentrations in Subsurface Soil at Site A 

 
Sample ID 

Arsenic 
(mg/kg) 

Chromium 
(mg/kg) 

 
Sample ID 

Arsenic 
(mg/kg) 

Chromium 
(mg/kg) 

APA-EPC-SB01-030 1.31 2.95 APA-EPC-SB07-030 1.81 5.1 
APA-EPC-SB01-040 1.95 5.17 APA-EPC-SB07-040 1.91 4.94 
APA-EPC-SB01-050 2.88 4.8 APA-EPC-SB07-050 2.31 4.76 
APA-EPC-SB02-030 1.71 4.53 APA-EPC-SB08-030 2.1 4.62 
APA-EPC-SB02-040 1.92 4.01 APA-EPC-SB08-040 1.89 4.72 
APA-EPC-SB02-050 2.33 5.91 APA-EPC-SB08-050 1.91 4.73 
APA-EPC-SB03-030 1.55 3.96 APA-EPC-SB09-030 1.49 3.21 
APA-EPC-SB03-040 1.75 4.81 APA-EPC-SB09-040 1.79 4.14 
APA-EPC-SB03-050 2.09 5.27 APA-EPC-SB09-050 2.71 4.85 
APA-EPC-SB04-030 2.38 5.99 APA-EPC-SB10-030 1.7 4.25 
APA-EPC-SB04-040 2.11 4.6 APA-EPC-SB10-040 1.93 5.09 
APA-EPC-SB04-050 2.33 5.51 APA-EPC-SB10-050 1.64 3.68 
APA-EPC-SB05-030 1.98 4.72 APA-EPC-SB11-030 1.94 5.12 
APA-EPC-SB05-040 1.55 3.56 APA-EPC-SB11-040 3.15 6.6 
APA-EPC-SB05-050 1.76 4.22 APA-EPC-SB11-050 2.32 6.19 
APA-EPC-SB06-030 1.31 3.91 APA-EPC-SB12-030 1.31 3.15 
APA-EPC-SB06-040 2.34 5.81 APA-EPC-SB12-040 1.97 4.11 
APA-EPC-SB06-050 1.22 4.48 APA-EPC-SB12-050 1.48 2.8 

 
 
 J-9.9  Parallel Coordinate Plot.  A parallel coordinate plot also extends the idea of a scat-
ter plot to higher dimensions. The parallel coordinates method employs a scheme where coordi-
nate axes are drawn in parallel (instead of perpendicular). Consider a set of m-dimensional 
sample points xi = (x1i, x2i, x3i,..., xmi), where i = 1, 2, 3…n. For the ith m-dimensional point, the 
variable X1 = x1i, X2 = x2i and so forth. A parallel coordinate plot is constructed by first placing an 
axis (Xi) for each of the m variables parallel to each other. Each point xi is graphically represented 
by plotting x1i on the X1 axis, x2i on the X2 axis and so forth, and then joining the set of m plotted 
values with a broken line. This method contains all of the information available on a scatter plot 
in addition to information on three-way and higher interactions (i.e., clustering among three vari-
ables). However, for m variables one must construct m(m – 1)/2 parallel coordinate plots in order 
to display all possible pairs of variables.  For an example of a parallel coordinate plot see EPA 
QA/G-9 section 2.3. 
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Figure J-20.  Scatter plot matrix. 
 
J-10 Contouring Data.  Contouring site data helps in visualizing site conditions and present-
ing results. The results could be groundwater elevations and flow directions or locations and vol-
umes of contamination. Contaminant concentrations are typically plotted by contouring the data 
over a site map. Contours or isopleths are lines of equal value (e.g., concentration). Lines or ar-
eas can be color coded or defined by a concentration range rather than a single value. Contour 
lines may not cross each other although they may form loops. The spacing of contour lines repre-
sents the gradient of the variable.  
 
 J-10.1  A topographic elevation map is a common contour map. Environmental data such 
as water table drawdown or chemical concentrations in water and air readily lend themselves to 
contouring. Contour maps are useful in data analysis because changes over distance, gradients, 
hot-spots, and the location of contaminants relative to site features, such as buildings and site 
boundaries, are apparent. 
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Figure J-21.  Naphthalene concentrations at Site A wells: side-by-side 
scatter plots. 
 

 J-10.2  Contours must be interpolated because data coverage at a site is partial. For in-
stance, water levels are measured only in monitoring wells even though the water table exists be-
tween wells. Interpolation estimates values within the existing data set while extrapolation 
estimates values outside the existing data set. Objects or values that are discontinuous spatially 
do not lend themselves to interpolation, for example, the presence of unexploded munitions at a 
test range. 
 
 J-10.3  There are numerous interpolation techniques available and selecting which to use 
depends on the media (soil, water, or air) and site-specific circumstances. Interpolation methods 
must be evaluated for their applicability, artifacts, and accuracy based on the analyst’s site 
knowledge and technical expertise. Small data sets and software default values can result in con-
tour maps that do not reflect actual site conditions. Software will often attempt to extrapolate be-
yond the data coverage unless a boundary is established or settings are carefully selected. It is 
good practice to contour data by hand and then compare results to computer-generated output. 
This allows the analyst to incorporate site-specific knowledge and intuition. 
 
 J-10.4  Currently available contouring software facilitates data interpretation and reinter-
pretation. Because data may be stored electronically, they may be readily revised and sorted. 
Numerous interpolation methods can be experimented with quickly. Pertinent information (such 
as sample depth, soil type, concentration) for a sampling point can be viewed by placing the cur-
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sor over it. High-end two-dimensional (2-D) and three-dimensional (3-D) color graphic images 
plus animation can be generated. 
 
 J-10.4  3-D contouring, which is typically done with the aid of computers, is important to 
consider as an analysis tool. 3-D iso-surfaces are generated in lieu of 2-D contour lines. The fail-
ure to view contamination in natural systems in three dimensions, excluding the vertical or depth 
components, can adversely affect decision-making. It can give rise to misinterpretations of con-
tamination sources (responsible parties) and transport, particularly when the geology is not later-
ally homogeneous or contaminants have densities different from the transport medium (solvents 
denser than water). 
 
 J-10.6  For field data to be adequately characterized, the manner in which the data will be 
analyzed should be considered when designing the sampling plan. The study area or area of con-
cern should be well within the sample grid. This helps establish a boundary and ensure that 
measurements will be taken where they are most needed. The spacing of sampling locations af-
fects the manner in which data will be analyzed and what can be learned from the data set. 
Poorly sized sampling grids can miss hot-spots or make the site appear more contaminated than 
it actually is. Poorly distributed data will lead to software drawing concentric contours around 
known values. It is often the case that vertical sample spacing is closer than the horizontal spac-
ing. This situation can cause the vertical samples to unduly override the horizontal characteristics 
of the subsurface. Scaling features can be used to compensate for biased data sets. 
 
 J-10.7  No single interpolation method will be universally appropriate. In addition to try-
ing more than one interpolation method, it is advisable to examine the computation used by the 
software. Some methods are better suited for certain data sets, such as those where values go 
from one extreme to another quickly or those where the changes are gradual and smooth. The 
mathematical function can also limit the interpolated value to a value not necessarily representa-
tive of site conditions. For example, simple inverse distance weighting (IDW) interpolates using 
the mean of two known values. The result is that the interpolated value lies between both known 
values and minimum and maximum values are not derived. It is also possible to interpolate nega-
tive values. Understanding the mathematical functions allows the input variables to be adjusted 
for individual circumstances. For instance, truncating a data set by setting a minimum and maxi-
mum concentration can alleviate some problems. The weight an interpolated point receives is di-
rectly related to its proximity to a known point. An interpolation’s accuracy can be checked by 
randomly removing data points and then comparing the new interpolated value to the value that 
was removed. 
 
 J-10.8  Interpolation methods include the following. 
 
 J-10.8.1  Linear Interpolation.  This is the mathematically simplest interpolation tech-
nique. This technique is referred to as manual or hand interpolation or contouring. A straight line 
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drawn between two known values is subdivided into equal segments. The location of the esti-
mated value is calculated using proportions. 
 
 J-10.8.2  IDW Interpolation.  This gives more weight to an estimated point the closer it is 
to a known data point. IDW is often used for groundwater level data. A power value of two typi-
cally yields smooth contours. 
 
 J-10.8.3  “Natural Neighbor” Interpolation.  This uses the same mathematical equation 
as IDW but the weighting technique is different. In addition, a polygon network is employed 
rather than a triangle network. The natural neighbor method may work well with clustered data.  
 
 J-10.8.4  Triangular Irregular Network (TIN) Interpolation.  This connects the data 
points with a gridwork of triangles. TIN is used with linear interpolation to estimate values from 
the three vertices of each triangle. 
 
 J-10.8.5  Spline Method.  This uses a polynomial function to fit a curve through the 
known points. It works well for data that change gradually. Splining is often applied to dense, 
regularly spaced data.  
 
 J-10.8.6  Kriging.  This uses spatial variance to interpolate data. Kriging assumes, as 
IDW does, that distance and weight are related, but it also accounts for the spatial variance 
(spread) as a function of distance. Variograms, used in kriging, are graphs of a mathematical 
function that show spatial dependence in relation to distance and direction. Kriging has an inter-
mediate step of matching the experimental variogram curve to a model variogram. Kriging han-
dles steep gradients well, and is a good place to start for analyzing geological data because it was 
originally developed to predict ore locations for the mining industry. Variograms can provide in-
sight into data sets even when kriging is not being performed. 
 
 J-10.9  Figure J-22 shows a groundwater elevation contour plot drawn by linear interpola-
tion. Figure J-23 shows the same groundwater elevation data, factoring in the analyst’s site 
knowledge. Figure J-24 shows the groundwater elevation data plot drawn by modeling software 
using IDW. 
 
 J-10.10  By using contouring with groundwater modeling software, otherwise static con-
tour maps can be run forward or backward in time. This predictive modeling can be used to esti-
mate the date at which some historical contaminant was released or plume migration at some 
future time. Groundwater modeling, GIS, statistics, and mapping software can perform various 
interpolation methods. 
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Figure J-22.  Contour plot drawn by linear interpolation. 
 



EM 1110-1-4014 
15 Jan 07 

 

J-37 

 
 

Figure J-23.  Contour plot drawn by linear interpretation incorporating site knowledge. 
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Figure J-24.  Contour plot drawn by modeling software using IDW. 
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APPENDIX K 
Intervals and Limits 

 
K-1 Introduction.  Statistics can be divided into two categories: estimation theory (descrip-
tive statistics) and hypothesis testing (inferential statistics). Estimation theory includes calculat-
ing confidence intervals as estimates for population parameters, while hypothesis testing focuses 
on the use of statistical tests to accept or reject hypotheses concerning these parameters.  
 
K-2 Types of Statistical Intervals.  Three types of statistical intervals are often constructed 
on data: confidence intervals, tolerance intervals, and prediction intervals. A confidence interval 
is designed to contain the specified population parameter, such as the mean, with a specified 
level of confidence. A confidence interval for the mean, for example, gives information about the 
average concentration level but offers little information about the highest or most extreme sam-
ple concentrations that are likely to be observed. In such cases, tolerance or prediction intervals 
are more appropriate. A confidence interval contains a parameter of interest, while a tolerance 
interval contains a proportion of the population, and a prediction interval contains one or more 
future observations. Statistical intervals are dependent upon distributional assumptions. Paramet-
ric and nonparametric methods for deriving intervals are also available. However, some non-
parametric intervals, such as the tolerance interval, require a large number of observations to 
provide a reasonable coverage and confidence level. More information about statistical intervals 
can be found in Hahn and Meeker (1991). 
 
 K-2.1  Confidence Interval.  It is often desirable to express or quantify the degree of un-
certainty for some estimate of an unknown population parameter. The most common type of in-
terval estimate is a confidence interval. A confidence interval is essentially an estimate for an 
unknown population parameter expressed as a range of values with some specified level of con-
fidence. The level of confidence describes the probability that the “interval will capture the true 
parameter in repeated samples” (Moore, 1999). 
 
 K-2.1.1  The values at each end of the interval are called confidence limits. The lower 
value is the lower confidence limit (LCL) and the upper value is the upper confidence limit 
(UCL). The calculation of a confidence limit depends on the sampling distribution. Confidence 
limits are readily calculated for normally distributed data. A two-sided confidence interval for 
some population parameter, Θ , will be a closed interval of the form ba ≤Θ≤ , where a is the 
lower limit and b is the upper limit. An upper one-sided confidence interval will be of the form 

b≤Θ and a lower one-sided confidence interval will be of the form a≥Θ . 
 
 K-2.1.2  For environmental work, it is often desirable to estimate the mean concentration 
of a contaminant in some environmental population (for example, the mean concentration of ar-
senic in a shallow groundwater aquifer). The population mean ( μ ) is often estimated by calcu-
lating the sample mean ( x ) for a set of n measurements. The uncertainty associated with the 
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sample mean (as an estimate of the population mean) would be addressed by constructing a con-
fidence interval for the population mean. A note on terminology: one calculates a confidence in-
terval for a population parameter, such as the population mean, and not for the corresponding 
sample statistic, such as the sample mean (though a statistic such as the sample mean may be 
used to calculate the confidence interval for the population parameter). 
 
 K-2.1.3  The upper bound of the confidence interval of the population mean, the UCL, is 
most frequently encountered. For example, risk assessments require the 95% UCL for use as the 
reasonable maximum exposure concentration. The UCL of the (population) mean is used for the 
exposure point concentration (EPC) in risk assessments because of the uncertainty associated 
with estimating the population or “true” mean concentration at a site (EPA OB92-963373). Re-
cent EPA guidance directs risk assessors in the possible methods used to calculate an upper con-
fidence limit on the population mean (EPA OSWER 9285.6-10). 
 
 K-2.1.4  The phrase “95% confidence interval” means that “if one repeatedly calculates 
such intervals from many sets of independent random samples,” 95% of the intervals, “in the 
long run, correctly contain the parameter of interest” (Hahn and Meeker, 1991). In other words, 
if a very large number of 95% confidence limits are calculated for the population mean, ap-
proximately 95% of the intervals (95 intervals out of 100) will contain the population mean. 
“More commonly, but less precisely, a two-sided confidence interval is described by a statement 
such as ‘we are 95% confident that the interval contains the parameter of interest.’ In fact, either 
the observed interval contains the parameter or it does not. Thus the 95% refers to the procedure 
for constructing a statistical interval, and not to the observed interval itself” (Hahn and Meeker, 
1991). Because not all data sets fit a normal distribution, formulas for calculating a lognormal 
and nonparametric confidence limit are also available.  
 
 K-2.1.5  The EPA recently published OSWER 9285.6-10. According to this latest guid-
ance, calculating a UCL should take into consideration outliers, censored data, and distribution 
testing (as described in Appendices I, H, and E). Once the distribution is determined, the calcula-
tion of an UCL should proceed according to the procedures for distributional methods. If, how-
ever, the site data do not follow a known distribution, then determining a good estimate of the 
UCL is left to the discretion of the risk assessor. Table K-1 presents the methods recommended 
in EPA guidance (OSWER 9285.6-10). Research in the area of UCL calculation is ongoing and 
recommendations may change in the future.  
 
 K-2.2  Tolerance Interval.  A tolerance interval is designed to contain a specified propor-
tion of the population (or percentile), such as 95% of all possible sample measurements (i.e., the 
95th percentile). Tolerance intervals are essentially confidence intervals around a specified per-
centile. It is rare that a quantile for the population is known; instead, it is estimated using a sam-
ple data set, and a confidence interval for the population quantile is calculated using the sample 
quantile (e.g., just as a confidence interval for the population mean is calculated using the sample 
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mean). Tolerance intervals are usually designed to cover all but a small percentage of the popula-
tion measurements, so observations should rarely exceed a tolerance interval if the observations 
come from a similar distribution.  
 
Table K-1 
UCL Method Flow Chart 

 
Are data normal? 

 
Yes  → 

 
Use Student’s t 

 
No ↓ 

  

 
Are data lognormal? 

 
Yes  → 

 
Use Land, Chebyshev (MVUE), or Student’s t (with small 
variance and skewness) 

No ↓   
 
Is another distribution appropriate? 

 
Yes  → 

 
Use distribution-specific method (if available) 
 

No ↓   
 

Is sample size large? 
 
Yes  → 

 
Use Central Limit Theorem-Adjusted (with small variance 
and mild skewness) or Chebyshev 

No ↓ 
 
→ 

  
 
Use Chebyshev, Bootstrap Resampling, or Jackknife 
 

 
 K-2.2.1  A tolerance interval is characterized by two quantities (probabilities): the cover-
age (the proportion of the population that the interval is supposed to contain), and the confidence 
level (the degree of confidence with which the interval reaches the specified coverage). As the 
interval is constructed from sample information, it is also a random interval. Because of sample 
fluctuations, a tolerance interval can contain the specified proportion of the population only with 
a certain confidence level. For example, “the (1 – α)100% tolerance interval with p100% cover-
age” refers to a tolerance interval constructed to contain at least 100p% of the distribution with 
(1 – α)100% level of confidence. 
 
 K-2.2.2  Upper tolerance limits (UTLs) (UCLs for percentiles) are often calculated for 
environmental work. For example, it may be desirable to compare contaminant concentrations in 
a study area to the UTL of the compound in a background area. If the concentrations of many 
site samples exceed the background UTL, site-related contamination probably exists. It is most 
common for environmental scientists to calculate the “95 UTL” (95% upper tolerance limit with 
95% coverage). 
 
 K-2.2.3  The method for calculating a tolerance interval depends on the nature of the un-
derlying population distribution. Tolerance intervals can be constructed assuming that the data or 
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the transformed data are normally distributed. It is also possible to construct nonparametric toler-
ance intervals using only the assumption that the data come from some continuous population. 
However, nonparametric tolerance intervals often require a large number of observations to pro-
vide a reasonable coverage and are impractical to construct for small sets of data. The data set 
with which tolerance intervals are calculated should be inspected for outliers and tested for nor-
mality before selecting the tolerance interval approach. 
 
 K-2.3  Prediction Interval.  A prediction interval is a statistical interval calculated to in-
clude one or more future observations from the same population with a specified confidence. A 
prediction interval calculated from some set of sample data is such that all of certain number of 
future measurements (k) from the same population will fall within the interval with some speci-
fied level of confidence. In other words, each k future observation is compared to the prediction 
interval. The interval is constructed to contain all k future observations with the stated confi-
dence. If any future observation exceeds the prediction interval, this is statistically significant 
evidence of a change in conditions. The number of future observations to be collected, k, must be 
specified (i.e., known before calculating the prediction interval). It is desirable to calculate pre-
diction intervals periodically, using the most recent data. (The EPA recommends at least yearly 
for groundwater analyses.) Concentrations of site contaminants are sometimes compared to 
background concentrations using prediction intervals. An upper prediction limit is calculated for 
the next k future observations using the background data set and the k site measurements are then 
compared to the upper prediction limit. If any of the k site measurements exceed the prediction 
limit, this suggests that the site concentrations are elevated with respect to background. 
 
 K-2.3.1  Prediction intervals are used to achieve some desired tolerance for Type I error 
(i.e., false rejection of H0) when the same statistical test is performed multiple times (e.g., k 
times). (Neither prediction nor tolerance intervals address Type II error.) For example, assume 
that the Type I error rate is α for falsely rejecting the null hypothesis, H0, for some statistical test 
or comparison. Assume that k independent statistical tests or comparisons are performed, where 
α denotes the probability of a false rejection (Type I error rate) for each individual test or com-
parison. The Type I error for the set of k independent comparisons, α*, is the following:  
 
 .)1(1* kαα −−=  
 
 K-2.3.2  Consider a single statistical test comparing populations 1 and 2, where H0 is re-
jected at a level of significance α = 0.05. Now, suppose that three, rather than two, populations 
are to be compared to each other using the same α for each comparison; that is, populations 1 
and 2, 2 and 3, and 1 and 3, are compared, where α = 0.05 for each of the k = 3 comparisons. As-
sume that the three populations are identical and all the measurements are independent of one 
another. The probability of rejecting H0 for at least one of the three populations (i.e., the false re-
jection rate for the set of three comparisons) is  
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 .14.0)95.0(1)1(1* 33 =−=−−= αα  
 
 K-2.3.3  Even though the false rejection rate for a single comparison is 0.05, the false re-
jection rate for the set of three comparisons is higher, 0.14. A larger false positive rate will be 
obtained when more than three different populations are being compared. Therefore, if a total 
false rejection rate of α = 0.05 is desired, the false rejection rate for each comparison must be 
less than 0.05. In fact, it can be shown that if a total false rejection rate (also called the experi-
ment wise error rate) of α is desired, then the false rejection rate, α*, for each comparison should 
be approximately α/k: 
 
 kk k)/1(1*)1(1 ααα −−≈−−=  . 
 
This is called the Bonferroni approximation. For example, if 05.0=α and k = 3, then the Type I 
error for each individual comparison ( *α ) must be approximately 0.05/3 = 0.0167. Note that  
 
 .05.0049.0)3/05.0(1)/1(1 3 ≈=−=−− kkα  
 
 K-2.3.4  Thus, a prediction interval for the next k measurements for the (1 – α)100% 
level of confidence that uses the Bonferroni approximation will entail the use of individual com-
parison with Type I error of α/k. For example, for normally distributed data, the prediction inter-
val for (1 – α)100% confidence for the next k observations is obtained from the quantile of the 
Student’s t-distribution t1–α/k (e.g., rather than t1–α). 
 
 K-2.3.5  It should be noted that, in general, prediction and tolerance intervals are not the 
same thing. The difference between a tolerance and prediction limit is one of interpretation and 
probability. Given n measurements and a desired confidence level, a tolerance interval will have 
a certain coverage percentage. A tolerance interval is designed so that, with some level of confi-
dence, a proportion p of future measurements will fall within the interval. Thus, a small propor-
tion 1 – p of the measures may fall outside the tolerance interval. A prediction limit, on the other 
hand, is designed so that, with some level of confidence, all future measurements fall within the 
interval. In this sense, the prediction limit may be thought of as a 100% coverage tolerance limit 
for the next k future observations. Thus, upper prediction intervals are constructed when all fu-
ture measurements must fall below some threshold value and tolerance intervals are typically 
constructed when only a large proportion of future measurements are required to exceed a 
threshold value. 
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K-3 Statistical Intervals Based on Normal Distribution. 
 
 K-3.1  Confidence Interval for the Mean.  For a normal distribution, the one-sided (1 – 
α)100% UCL for the population mean is computed using the sample mean and standard devia-
tion, and the (1 – α) quantile of Student’s t-distribution with n – 1 degrees of freedom: 
 
 ( )1 1 , 1UCL /nx t s nα α− − −= +  . 

 
Quantiles of the Student’s t-distribution for various degrees of freedom are provided in Appendix 
B, Table B-23. Student’s t can also be obtained in Microsoft Excel with the formula 

)1,2( −nTINV α , for a one-sided (upper) ( ) %1001 α− UCL for 1−n degrees of freedom. When 
data are normally distributed, or if there are more than 30 samples available, a normal two-sided 
or one-sided confidence interval for the population mean (μ) with %100)1( α− level of confi-
dence can be computed as directed in the Paragraph K-3.2. An example is provided in Paragraph 
K-3.3.  
 
 K-3.2  Directions for the Confidence Interval for the Mean (Normal Distribution) When 
the Population Standard Deviation is Unknown.  Let nxxx ,,, 21 K  represent the n data points 
from a normal distribution. These could be either n individual samples or n composite samples 
consisting of k aliquots each. 
 
 K-3.2.1  Verify that data come from a normal distribution using tests presented in Ap-
pendices F and J such as the Shapiro-Wilk test (Paragraph F-3) and a normal probability plot 
(Paragraph J-5.5). 
 
 K-3.2.2  Calculate the sample mean, x , and the standard deviation, s (Appendix D). 
 
 K-3.2.3  Use Table B-23 of Appendix B to find the critical value such that %100)1( α−  
of the t-distribution with 1−= nv  degrees of freedom (df) is below this value. For a one-sided 
confidence interval (when just a LCL or an UCL is to be calculated), the critical value is the per-
centile vt ,1 α− . For a two-sided confidence interval (when both a LCL and UCL are to be calcu-
lated), the critical value is vt ,2/1 α− .  
 
 K-3.2.4  For example, if a two-sided 95% confidence interval is estimated, where 

05.0=α and 16=n , then 151161 =−=−= nv  and 131.215,975.015),2/05.0(1 ==− tt . If a one-sided 
95% confidence interval is estimated, where 05.0=α and 16=n , then 151161 =−=−= nv  
and .753.115,95.015,05.01 ==− tt  
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 K-3.2.5  For one-side confidence intervals for the population mean ( μ ), the equations for 
estimating the upper confidence limit (UCL) and lower confidence limit (LCL) are as follows: 
 
 ( )1 ,UCL  x  t s/ nα ν−= +  

 
 ( )1 ,LCL  x  t s/ nα ν−= − . 

 
 K-3.2.6  The corresponding one-sided confidence intervals for are as follows:  
 
 ( )( )ns/t x να ,1, −+∞−  
 
 ( )( )∞+− − ,,1 ns/t x να . 
 
 K-3.2.7  The two-sided confidence interval for the population mean is as follows: 
 
 ( )ns/t  x να ,2/1−± . 
 

 K-3.3  Example of a Confidence Interval for the Mean (Normal Distribution).  Suppose a 
one-sided 95% lower confidence interval is desired for the mean concentration of (total) chro-
mium in subsurface (below 5 feet from ground surface) soil at Site A.  
 
 K-3.3.1  These are the same data used in Paragraph L-6.1.3 as an example of a one-
sample t-test. In that example there was evidence that the average was greater than 2 and not 
less than 2. A similar conclusion can also be reached when confidence intervals are constructed 
and compared to the regulatory threshold of 2, as illustrated in this example.  
 
 K-3.3.2  The first step is to verify that the data follow a normal distribution. The Shapiro-
Wilk test is performed with these data; this test shows evidence that the data follow a normal dis-
tribution because the test’s p value was 0.8489 and is greater than 0.05. 
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Table K-2 

Example Data 

Site A Sample 
Location 

Top 
Depth of 
Sample 

Bottom 
Depth of 
Sample 

Chromium 
(Total) Concen-
tration (mg/kg)

Site A Sample 
Location 

Top 
Depth of 
Sample 

Bottom 
Depth of 
Sample 

Chromium 
(Total) Con-
centration 

(mg/kg) 
EPC-SB01  9 10 2.95 EPC-SB07  9 10 5.1 
EPC-SB01  14 15 5.17 EPC-SB07  14 15 4.94 
EPC-SB01  19 20 4.8 EPC-SB07  19 20 4.76 
EPC-SB02  9 10 4.53 EPC-SB08  9 10 4.62 
EPC-SB02  14 15 4.01 EPC-SB08  14 15 4.72 
EPC-SB02  19 20 5.91 EPC-SB08  19 20 4.73 
EPC-SB03  9 10 3.96 EPC-SB09  9 10 3.21 
EPC-SB03  14 15 4.81 EPC-SB09  14 15 4.14 
EPC-SB03  19 20 5.27 EPC-SB09  19 20 4.85 
EPC-SB04  9 10 5.99 EPC-SB10  9 10 4.25 
EPC-SB04  14 15 4.6 EPC-SB10  14 15 5.09 
EPC-SB04  19 20 5.51 EPC-SB10  19 20 3.68 
EPC-SB05  9 10 4.72 EPC-SB11  9 10 5.12 
EPC-SB05  14 15 3.56 EPC-SB11  14 15 6.6 
EPC-SB05  19 20 4.22 EPC-SB11  19 20 6.19 
EPC-SB06  9 10 3.91 EPC-SB12  9 10 3.15 
EPC-SB06  14 15 5.81 EPC-SB12  14 15 4.11 
EPC-SB06  19 20 4.48 EPC-SB12  19 20 2.8 

 
 K-3.3.3  The mean and standard deviation of the data were calculated:  
 
 619.4=x  
 
 8980.0=s . 
 
Note that:  
 
 05.0=α  (for the 95% level of confidence) 
 
 36=n  
 
and  
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 351361 =−=−= nv . 
 
 K-3.3.4 Using Table B-23 of Appendix B and linear interpolation, we find the critical 
value to be 1.691.  
 
 691.12/)684.1697.1(35,95.0,1 =+==− tt vα . 
 
The confidence interval is  
 

 ( ){ }( ) ( )4.619 1.691 0.8980 / 36 , 4.37 ,− ∞ = ∞  . 

 
 K-3.3.5 The confidence interval does not contain 2 (the lower confidence limit exceeds 
2); therefore, this is evidence that the average is greater than 2, the regulatory threshold. 
 
 K-3.4  Tolerance Interval (Normal Distribution).  A one-sided tolerance limit is an upper 
or a lower confidence limit of a percentile (or proportion). A one-sided upper tolerance limit 
(UTL) that is greater than at least p100% of the population with probability (1 – α)100% is the 
(1 – α)100% upper confidence limit for the p100th percentile of the population (Hahn, 1970). 
Similarly, a one-sided lower tolerance limit (LTL) that is less than at least p100% of the popula-
tion with probability (1 – α)100% is the (1 – α)100% lower confidence limit for the p100th per-
centile of the population. However, two-sided tolerance intervals are not equivalent to two-sided 
confidence intervals of percentiles. “Tolerance limits differ from confidence intervals in that tol-
erance limits provide an interval within which at least a proportion q of the population lies, 
within probability 1 – α or more that the stated interval does indeed ‘contain’ the proportion q of 
the population” (Conover, 1999). “Two-sided tolerance intervals are rarely used in environ-
mental studies, perhaps because there are few applications that attempt to determine the location 
of a central proportion of data, with allowable exceedances at both high and low ends” (Helsel, 
2005). 
 
 K-3.4.1  Directions for a Tolerance Interval  (Normal Distribution). Let nxxx ,,, 21 K  rep-
resent the n data points from a normal distribution. These could be either n individual samples or 
n composite samples consisting of k aliquots each. A two-sided (1 – α)100% tolerance interval to 
contain at least p100% of a normal distribution is denoted as ( )UL xx , , where xL is the lower tol-
erance limit and xU is the upper tolerance limit. 
 
 K-3.4.1.1  Verify data come from a normal distribution using tests presented in Appendi-
ces F and J, such as the Shapiro-Wilk test (Paragraph F-3) and a normal probability plot (Para-
graph J-5.5). 
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 K-3.4.1.2  Calculate the sample mean, x , and the standard deviation, s (Appendix D).  
 

 K-3.4.1.3  For a two-sided tolerance interval, ( )UL xx , : 
 
 npL gsxx ,,1 α−−=  
 
 npU gsxx ,,1 α−+=  . 

 
 K-3.4.1.4  Use Table B-14 of Appendix B to find the critical value g.  

 
 K-3.4.1.5  An approximation for g that may be useful (e.g., to find values of g that are not 
in Table B-13) is: 
 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
≈

−
+− n

nZg
n

pnp 2
111

2/1

2
1,

2/1,,1
α

α χ
 . 

 
Percentiles of the chi-square distribution, 2

,νχ p , are listed in Table B-2. Percentiles of the stan-
dard normal distribution, Zp, are listed in Table B-15. Hahn states that the approximation “ap-
pears to be good for most practical purposes even for n as small as 5” (Hahn, 1970). 
 
 K-3.4.1.6  For a one-sided lower tolerance limit, Lx : 
 
 npL gsxx ,,1 α−′−=  . 

 
 K-3.4.1.7  For a one-sided upper tolerance limit, Ux : 
 
 npU gsxx ,,1 α−′+=  . 
 
 K-3.4.1.8  Use Table B-13 of Appendix B to find the critical value g´ (for values of p > 
0.5).  
 
 K-3.4.1.9 An approximation for g´ that may be useful is: 

 

 
( ) 2/12

,,1 a
abZZ

g pp
np

−+
≈′−α  
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 ( )12
1

2
1

−
−= −

n
Za α  

 

 
n

ZZb p

2
12 α−−=  . 

 

However, Hahn states that this approximation “is poor for very small n, especially for large p and 
large 1- α, and is not advised for n < 8” –α (Hahn, 1970). 

 
 K-3.4.2  Example of a Two-sided Tolerance Interval (Normal Distribution).  Suppose a 
two-sided 95% tolerance interval to contain at least 90% of the population is desired for chro-
mium concentrations (total) in subsurface (below 5 feet from ground surface) soil at Site A, us-
ing the same data as Paragraph K-3.2. 

 
 K-3.4.2.1  The first step is to verify that the data follow a normal distribution. The 
Shapiro-Wilk test is performed with these data. This test shows evidence that the data follow a 
normal distribution because the test’s p value was 0.8489 and is greater than 0.05. 
 
 K-3.4.2.2 The mean and standard deviation of the data were calculated: 
 
 619.4=x  
 
 8980.0=s . 
 
Note that: 
 
 90.0=p  
 
 36=n  
 
 05.0=α . 
 
 K-3.4.2.3  From Table B-14, 090.235,90.0,95.0 =g and 052.240,90.0,95.0 =g . Therefore,  
 

 ( ) 082.2052.2090.2
3540
3536090.236,90.0,95.0 =−

−
−

−=g . 

 
 K-3.4.3.4  The equation in Paragraph K-3.4.1.5 can also be used to calculate g: 
 



EM 1110-1-4014 
15 Jan 07 
 

K-12 

( ) 082.2014.1
46.22

35645.1
362

11136 2/12/1

2
35,05.0

2/90.01,,1 =×⎟
⎠
⎞

⎜
⎝
⎛×=⎟

⎠
⎞

⎜
⎝
⎛

×
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
≈ +− χα Zg np . 

 
K-3.4.3.5  The two-sided tolerance interval is: 
 

8980.0082.2619.4 ×±  mg/kg 
 

(2.749, 6.489) mg/kg. 
 
 K-3.4.3  Example of a One-Sided Upper Tolerance Limit, UTL (Normal Distribution).  
Suppose a UTL for the 95th percentile and 95% confidence level (also called a 95 UTL) is de-
sired for chromium concentrations (total) in subsurface (below 5 feet from ground surface) soil at 
Site A, using the same data in Paragraph K-3.3. 
 
 K-3.4.3.1  As shown in the previous examples, the data seem to follow a normal distribu-
tion. For this example: 
 
 95.0=p  
 
 36=n  
 
 05.0=α  
 
 95.01 =−α  
 
 619.4=x  
 
 8980.0=s . 
 
 K-3.4.3.2  Using Table B-13 of Appendix B and linear interpolation, we find the critical 
value for the one-sided upper confidence limit to be  
 

 ( ) 159.2125.2167.2
3540
3536167.236,95.0,95.0,,1 =−

−
−

−=′=′− gg npα . 

 
 K-3.4.3.3  The approximation for g´ in Paragraph K-3.4.1.9 may also be used to estimate 
g´: 
 

 ( ) ( ) 9613.0
70
645.11

1362
1

12
1

22
95.0

2
1 =−=

−
−=

−
−= − Z

n
Za α  
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 631.2
36
645.1645.1

36

2
2

2
95.02

95.0

2
12 =−=−=−= − ZZ
n

ZZb p
α  

 

 
( ) ( ) 149.2

9613.0
631.29613.0645.1645.1 2/122/12

,,1 =
×−+

=
−+

≈′− a
abZZ

g pp
npα . 

 
 K-3.4.3.4  So, using the value for g´ from Table B-13, the UTL is: 
 
 558.6159.28980.0619.4UTL =×+=  mg/kg. 
 
 K-3.4.4  Confidence Interval for the Variance or Standard Deviation (Normal Distribu-
tion).  To estimate the precision of variance estimates, a confidence interval for the variance or 
standard deviation can be constructed. This information may be necessary for a sensitivity analy-
sis of the statistical test or analysis method. The method described below can be used to find a 
two-sided %100)1( α− confidence interval. This confidence interval assumes that the data consti-
tute a random sample from a normally distributed population and can be highly sensitive to out-
liers and to departures from normality. Directions are presented in Paragraph K-3.4.4.1, followed 
by an example in Paragraph K-3.4.4.2. 

 
 K-3.4.4.1  Directions for a Confidence Interval for the Variance and Standard Deviation 
(Normal Distribution).  Let nxxx ,,, 21 K represent the n data points from a normal distribution. 
 
 K-3.4.4.1.1  Verify data come from a normal distribution using tests presented in Appen-
dices F and J such as the Shapiro-Wilk test (Paragraph F-3) and a normal probability plot (Para-
graph J-5.5). 
 
 K-3.4.4.1.2  Calculate the sample variance, 2s  (Appendix D). 
 
 K-3.4.4.1.3  For a %100)1( α− two-sided confidence interval, use Table B-2 of Appendix 
B to find the critical values 2

,2 vαχ and 2
,21 vαχ −  with degrees of freedom v = (n – 1). 

 
 K-3.4.4.1.4  A %100)1( α− confidence interval for the true underlying variance is 

),( 22
UL ss : 

 

 2
,21

2
2 )1(

v
L

sns
αχ −

−
=  
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 2
,2

2
2 )1(

v
U

sns
αχ
−

= . 

 
 K-3.4.4.1.5  A %100)1( α− confidence interval for the true underlying standard deviation 
is ),( UL ss : 
 

 2
,21

2)1(

v
L

sns
αχ −

−
=  

 

 2
,2

2)1(

v
U

sns
αχ
−

= . 

 
 K-3.4.4.2  Example of Constructing a Confidence Interval for the Sample Variance and 
Standard Deviation (Normal Distribution).  Consider the following data, background subsurface 
chromium concentrations of 3.84, 4.26, 4.53, 4.60, 5.28, 5.29, 5.74, and 5.86 mg/kg.  
 
 K-3.4.4.2.1  A confidence interval for the sample variance will be calculated based on a 
95% level of confidence. 

 K-3.4.4.2.2  Testing the data for normality using the Shapiro-Wilk test indicated that the 
data were normal. So, a confidence interval for the sample variance based on a normal distribu-
tion can be calculated. 
 
 K-3.4.4.2.3  The sample variance, 526.02 =s . The required critical values are obtained 
from Table B-2: 
 
 69.12

7,025.0
2

1,2/ ==− χχα n  
 
 01.162

7,975.0
2

1),2/1( ==−− χχ α n . 

 
 K-3.4.4.2.4  A 95% confidence interval for the true underlying variance is (0.228, 2.18): 
 

 228.0
01.16

)526.0)(18()1(
2

1,21

2
2 =

−
=

−
=

−− n
L

sns
αχ
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 18.2
69.1

)526.0)(18()1(
2

1,2

2
2 =

−
=

−
=

−n
U

sns
αχ

. 

 
 K-3.4.4.2.5  A 95% confidence interval for the true underlying standard deviation is 
(0.479, 1.48): 
 

 
( )

479.0228.0)1(
2

1,2/1

2

==
−

=
−− n

L
sns

αχ
 

 

 48.118.2)1(
2

1,2

2

==
−

=
−n

U
sns

αχ
. 

 
 K-3.4.5  Prediction Interval (Normal Distribution).  The prediction interval presented 
here is constructed assuming that the data follow a normal distribution with unknown mean and 
standard deviation. Most evaluations with environmental data only need a one-sided prediction 
interval, so this discussion will focus on the one-sided, upper prediction limit. To obtain a two-
sided prediction interval, first replace α  by 2α . Then use the equation for the upper limit as the 
lower limit after replacing the addition of the standard deviation term with subtraction. The pre-
diction interval must specify the overall level of confidence. That means a prediction interval’s 
confidence level must account for the level of confidence of every future comparison. This is ac-
complished by setting the confidence level for each of the k future comparisons to 

%100)/1( kα− . Directions for calculating an upper prediction limit are presented in Paragraph 
K-3.4.5.1, followed by an example in Paragraph K-3.4.5.2.  
 
 K-3.4.5.1  Directions for Calculating an Upper Prediction Limit for k Future Compari-
sons of the Mean Calculated from m Observations (Normal Distribution).  Verify the assump-
tions of normality. 
 
 K-3.4.5.1.1  The population mean and standard deviation are unknown. Specify k and m 
for the interval, where the mean of m observations is taken k times in the future (i.e., k samples 
are analyzed and the result reported for each sample is the mean of m replicate measurements).  
 
 K-3.4.5.1.2 Specify the level of confidence for the upper prediction limit as %100)1( α− . 
 
 K-3.4.5.1.3 Calculate the upper prediction limit  
 

 
nm

tsx nk
11

1,1 ++ −−α  
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where x  is the mean of the original data, s is the standard deviation, and n is the total number of 
observations (measurements of the original data set).  
 
 K-3.4.5.1.4  Table B-23 of Appendix B provides values for 1,1 −− nkt α .  
 
 K-3.4.5.1.5  If the future observations are found to be in the prediction interval, this is 
evidence that there has been no change in the sample values. If a future observation falls outside 
of the prediction interval, this is statistical evidence that the new observation does not come from 
the same distribution. 
 
 K-3.4.5.1.6 When replicate sample analyses are not done (i.e., a signal measurement or 
analysis is performed for each sample), set m = 1. For a single future observation (i.e., one sam-
ple analyzed once), set 1=m  and 1=k . 
 
 K-3.4.5.2  Example of Calculating a Normal Upper Prediction Limit for k Future Com-
parisons of the Mean from m Observations (Normal Distribution).  A prediction interval is cal-
culated for a set of “background well” measurements to determine if a set of “compliance well” 
measurements are “elevated” relative to background levels. The background well data set was 
tested for normality using the Shapiro-Wilk test. Because the data set was not normally distrib-
uted, the data set was normalized by taking the natural logarithm of each result.   
 
 K-3.4.5.2.1  For the compliance well data set, m = 4 replicate measurements are made for 
k = 1 sample. Let α = 0.01 for the prediction interval. For the background data set, n = 8. 
 

Table K-3 
Example Compliance Well data 

Background 
Well 

Sample 
Date Result Log Re-

sult 
Compliance 

Well Result Log Result Sample 
Date 

69-2-07 2001 0.0137  –4.290 69-2-08 0.563 –0.574 2002 
69-2-07 2001 0.019  –3.963 69-2-08 0.512 –0.669 2002 
69-2-07 2001 0.0163  –4.117 69-2-08 0.475 –0.744 2002 
69-2-07 2001 0.0195  –3.937 69-2-08 0.546 –0.605 2002 
69-2-07 2001 0.0112  –4.492     
69-2-07 2001 0.0112  –4.492     
69-2-07 2001 0.0102  –4.585     
69-2-07 2001 0.00946  –4.661     
Mean - 0.01382 –4.317  0.524 –0.6484  

Std. Dev. - 0.00398 0.2832  0.0389 0.0753  
 

 79.3
8
1

4
1)998.2(2832.0317.411

1,1 −=++−=++ −− nm
tsx nkα  
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 998.27,99.018,
1
01.011,1 ===

−−
−− ttt nkα   

 
using Table B-23 of Appendix B. 
 
 K-3.4.5.2.2  Because the data set was transformed by taking the natural logarithm prior to 
calculating the upper prediction limit, to express the calculated limit in terms of the original 
units, it is necessary to perform the inverse transformation (i.e., to take the exponent of the calcu-
lated limit): exp(–3.79) = 0.0226. Therefore, the prediction interval is (0, 0.0226). Now we can 
compare the mean of the compliance well observations (0.524) with the upper limit of the predic-
tion interval (0.022) calculated from the background well data. As 0.524 > 0.0226, there is sig-
nificant evidence that the compliance well observations do not come from the same distribution 
as the background well.  
 
K-4 Statistical Intervals Based on Lognormal Distribution. 
 
 K-4.1  Confidence Interval for the Mean.   
 
 K-4.1.1  When data are truly lognormal, it is not recommended that confidence intervals 
be calculated using the natural-log transformed data and the normal confidence intervals. One 
reason is that the units as well as the confidence intervals would be in log scale. The confidence 
intervals cannot be transformed back to the original scale and original units without a special ad-
justment. 
 
 K-4.1.2  For a lognormal distribution (the second alternative provided in the EPA UCL 
method flow chart), the EPA recommends calculating the UCL of the mean using one of several 
options based on the sample size, n, and the standard deviation of the log-transformed data, sy. 
Table K-4, which summarizes these recommendations, has been adapted from the ProUCL Ver-
sion 3.0 User Guide (EPA 600/R-97/006). Determining the UCL for lognormal populations is a 
current area of research and these recommendations are subject to change. It should be noted that 
ProUCL is freely distributed and relatively simple to use. In addition to the computational meth-
ods listed below, the most current version of the software uses the gamma distribution to calcu-
late UCLs. The software calculates UCLs using a number of different computational methods 
and automatically selects the “best” method (e.g., using criteria similar to that presented in Table 
K-4). However, it should also be noted that these computational methods can result in relatively 
large UCLs (e.g., near the maximum detected values when the distributions are extremely 
skewed). This problem can be potentially avoided or at least minimized by collecting composite 
rather than grab samples (when possible and consistent with data quality objectives), as this 
tends to normalize data (i.e., composite samples produced from a sufficiently large number of 
grabs tend to be normally distributed). 
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 K-4.2  Land Method.   
 
 K-4.2.1  Introduction.  The Land method was touted in older EPA guidance, but it is no 
longer recommended in all cases because it is very sensitive to deviations from lognormality. 
Recall that distribution tests are primarily tests that the fit assumption cannot be rejected, rather 
than that the fit is perfect. Consequently, it is possible to pass a test for lognormality even when 
there are deviations from that distribution. This outcome is more likely for small data sets (< 30), 
which are quite common in environmental applications. The UCL for the Land method is as fol-
lows: 
 

 
2 2

1
1UCL exp

2 1
y ys H s

y
n

α
α

−
−

⎛ ⎞
= + +⎜ ⎟⎜ ⎟−⎝ ⎠

 . 

 
 K-4.2.1.1  The value of the H statistic is available in some statistical texts, including Gil-
bert (1987) and in Table B-8 of Appendix B. 
 
 K-4.2.1.2  Directions for constructing a confidence interval for the population mean of a 
lognormal distribution using the Land method are given in Paragraph K-4.2.2, followed by an 
example in Paragraph K-4.2.3 (EPA 600/R-97/006).  
 
 K-4.2.2  Directions for a Confidence Interval for the Mean (Lognormal Distribution, 
Land Method).  Let nxxx ,,, 21 K  represent the n data points from a lognormal distribution. 
 
 K-4.2.2.1  Verify that data come from a lognormal distribution using tests presented in 
Appendices F and J such as the Shapiro-Wilk test (Paragraph F-3) and a normal probability plot 
(Paragraph J-5.5). 
 
 K-4.2.2.2  Using the log-transformed data, ( )ii xLny = , calculate the sample mean, y , 
and the standard deviation, ys . 
 
 K-4.2.2.3  Use Table B-8 of Appendix B to find the critical value (also called the H sta-
tistic) for the given level of confidence, sample size, and standard deviation. If a two-sided con-
fidence interval for the mean is desired (LCL, UCL), the critical values are 

ysnH ,,2/α and 

ysnH ,,2/1 α−  for the LCL and UCL, respectively. If a one-sided confidence interval for the mean is 

desired, the critical value for the LCL is
ysnH ,,α , or the critical value for an UCL is 

ysnH ,,1 α− . To 
estimate H values not in the table, a four-point Lagrangian interpolation (cubic interpolation) 
should be implemented. 
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Table K-4 
Recommended Methods for Computation of a 95% UCL for the Unknown Mean of a Log-
normal Population 

Standard Deviation of 
Log-Transformed Data, 

ys  
Sample Size, n 

 
Recommended Method (Paragraph Reference) 

 
0.5ys <  For all n Student’s t (K-3.4.4) or 

Land (K-4.1) 
0.5 1.0ys≤ <  For all n Land (K-4.1) 

25<n  95% Chebyshev (MVUE) UCL (K-4.1) 
1.0 1.5ys≤ <  

25≥n  Land (K-4.1) 
20<n  99% Chebyshev (MVUE) UCL (K-4.1) 

5020 <≤ n  95% Chebyshev (MVUE) UCL (K-4.1) 1.5 2.0ys≤ <  

50≥n  Land (K-4.1) 
20<n  99% Chebyshev (MVUE) UCL (K-4.1) 

5020 <≤ n  97.5% Chebyshev (MVUE) UCL (K-4.1) 
7050 <≤ n  95% Chebyshev (MVUE) UCL (K-4.1) 

2.0 2.5ys≤ <  

70≥n  Land (K-4.1) 

30<n  Larger of (99% Chebyshev (MVUE) UCL (K-4.1) or 99% 
Chebyshev (Mean, Sd) (K-5) 

7030 <≤ n  97.5% Chebyshev (MVUE) UCL (K-4.1) 
10070 <≤ n  95% Chebyshev (MVUE) UCL (K-4.1) 

2.5 3.0ys≤ <  

100≥n  Land (K-4.1) 
15<n  Hall’s Bootstrap* (K-4.1) 

5015 <≤ n  Larger of (99% Chebyshev (MVUE) UCL (K-4.1) or 99% 
Chebyshev (Mean, Sd) (K-5) 

10050 <≤ n  97.5% Chebyshev (MVUE) UCL (K-4.1) 
150100 <≤ n  95% Chebyshev (MVUE) UCL (K-4.1) 

3.0 3.5ys≤ <  

150≥n  Land (K-4.1) 
3.5ys ≥  For all n Use non-parametric methods* (K-5) 

 
*In case Hall’s Bootstrap method yields an erratic unrealistically large UCL value, then the UCL of the mean may 
be computed based upon the Chebyshev inequality. 

 
 K-4.2.2.4  For a two-sided confidence interval for the mean, the equations are as 
follows: 
 

 
2 2

/ 2 1 / 2LCL exp , UCL exp
2 21 1
y y y y as s H s s H

 = y  = y
n n

α −⎛ ⎞ ⎛ ⎞
+ + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

. 
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 K-4.2.2.5  For a one-sided confidence interval for the mean, LCL or UCL, the 
equation is as follows: 
 

 
2

LCL exp
2 1
y ys s H

 = y
n

α⎛ ⎞
+ +⎜ ⎟⎜ ⎟−⎝ ⎠

 or 
2

1UCL exp
2 1
y y as s H

 = y
n

−⎛ ⎞
+ +⎜ ⎟⎜ ⎟−⎝ ⎠

. 

 
 K-4.2.3  Example of a Confidence Interval for the Mean (Lognormal Distribution), Land 
Method.  Suppose a one-sided 95% UCL is desired for concentrations of chromium (total) in 
background subsurface soil (5 feet below ground surface). 
 

Sample ID Result (mg/kg) Ln(Result) (Ln mg/kg) 
EPC-BG01-013 0.0196 –3.932 

  EPC-BG01-020 0.00605 –5.108 
  EPC-BG02-010 0.00485 –5.329 
  EPC-BG02-020 0.0101 –4.595 
  EPC-BG03-010 0.00756 –4.885 
  EPC-BG03-020 0.00596 –5.123 
  EPC-BG04-010 0.0143 –4.248 
  EPC-BG04-020 0.00499 –5.300 
  EPC-BG05-010 0.00997 –4.608 
  EPC-BG05-020 0.00464 –5.373 
  EPC-BG06-010 0.00813 –4.812 
  EPC-BG06-023 0.00313 –5.767 
  EPC-BG07-010 0.00834 –4.787 
  EPC-BG07-020 0.00579 –5.151 
  EPC-BG08-010 0.00638 –5.055 
  EPC-BG08-020 0.00517 –5.265 

 
 K-4.2.3.1  The first step is to verify that the data follow a lognormal distribution. The 
Shapiro-Wilk test was performed with the log-transformed data. This test shows evidence that 
the data follow a normal distribution because the test’s p value was 0.6570 and is greater than 
0.05. 
 
 K-4.2.3.2  Using the log-transformed data,  
 
 959.4−=y   
 
and 
 
 4574.0=ys . 
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 K-4.2.3.3  The critical value is 007.24574.0,16,95.0 =H . A four-point Lagrangian interpola-
tion (cubic interpolation) was implemented to obtain this critical value. K-4.2.4 shows how the 
critical value 4574.0,16,95.0H  was derived.  
 
 K-4.2.3.4  For a one-sided upper confidence interval for the mean, UCL, the equation is: 
 

 
2 2

1 0.4574 0.4574(2.007)UCL exp exp 4.959 0.0099.
2 21 16 1
y y as s H

 = y
n

−⎛ ⎞ ⎛ ⎞
+ + = − + + =⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

 

 
 K-4.2.4  Lagrangian Interpolation (Cubic Interpolation) for the H Statistic. The details of 
the Lagrangian (cubic) interpolation are provided to assist in the use of Table B-8 of Appendix 
B. 
 
 K-4.2.4.1  Suppose the H statistic ( )

ysnH ,,2/1 α−  is desired for  
 
 95.02/1 =−α  
 
 16=n  
 
 4574.0=ys   
 
(from Paragraph K-4.2.3). 
 
 K-4.2.4.2  A Lagrangian interpolation requires bounding the desired value by two tabu-
lated values lower and two tabulated values higher than the desired value. Using the example 
above, we need a column of H statistics when 16=n  because there is no such column in Table 
B-8. The tabulated columns n = 12, 15 (two values below 16) and n = 21, 31 (two values above 
16) are used to generate a column for 16=n . Once the column of H statistics is generated for 

16=n , Lagrangian interpolation can be used to get the H statistic for 4574.0=ys . 
 
 K-4.2.4.3  So the columns associated with sy = 0.30, 0.40 (two values below 0.4574) and 
sy = 0.50, 0.60 (two values above 0.4574) are used to generate a column for sy = 0.4574. 
 
 K-4.2.4.4  From Table B-8, the following H statistics,

ysnH ,,95.0 , are needed for these in-
terpolations: 
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 n 

ys  12 15 16 21 31 
0.30 1.927 1.882 30.0,16,95.0H  1.833 1.793 
0.40 2.026 1.968 40.0,16,95.0H  1.905 1.856 
0.4574 — — 4574.0,16,95.0H  — — 
0.50 2.141 2.068 50.0,16,95.0H  1.989 1.928 
0.60 2.271 2.181 60.0,16,95.0H  2.085 2.010 

 
 K-4.2.4.5  The first part of the interpolation process is to generate a column of H statistics 
for 16=n . For each sy, the following equation is used: 
 

 
.

)2131)(1531)(1231(
)2116)(1516)(1216(

)3121)(1521)(1221(
)3116)(1516)(1216(

)3115)(2115)(1215(
)3116)(2116)(1216(

)3112)(2112)(1512(
)3116)(2116)(1516(

,31,95.0,21,95.0

,15,95.0,12,95.0,16,95.0

yy

yyy

ss

sss

HH

HHH

−−−
−−−

+
−−−
−−−

+
−−−
−−−

+
−−−
−−−

=
 

 
So, 

 .8702.10118.02037.0960.12817.0

)793.1(
)2131)(1531)(1231(
)2116)(1516)(1216()833.1(

)3121)(1521)(1221(
)3116)(1516)(1216(

)882.1(
)3115)(2115)(1215(
)3116)(2116)(1216()927.1(

)3112)(2112)(1512(
)3116)(2116)(1516(

30.0,16,95.0

=−++−=
−−−
−−−

+
−−−
−−−

+
−−−
−−−

+
−−−
−−−

=H

 

 
The same process was used to determine 40.0,16,95.0H , 50.0,16,95.0H , and 60.0,16,95.0H . 
 

 n 
ys  12 15 16 21 31 

0.30 1.927 1.882 1.870 1.833 1.793 
0.40 2.026 1.968 1.953 1.905 1.856 
0.4574 — — 4574.0,16,95.0H  — — 
0.50 2.141 2.068 2.049 1.989 1.928 
0.60 2.271 2.181 2.158 2.085 2.010 

 
 K-4.2.4.6  Next, the H statistic values for the various ys  at 16=n  are used to interpolate 

4574.0,16,95.0H . 
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.007.2
1384.0320.19337.01087.0

)158.2(
)50.060.0)(40.060.0)(30.060.0(

)50.04574.0)(40.04574.0)(30.04574.0(

)049.2(
)60.050.0)(40.050.0)(30.050.0(

)60.04574.0)(40.04574.0)(30.04574.0(

)953.1(
)60.040.0)(50.040.0)(30.040.0(

)60.04574.0)(50.04574.0)(30.04574.0(

)870.1(
)60.030.0)(50.030.0)(40.030.0(

)60.04574.0)(50.04574.0)(40.04574.0(
4574.0,16,95.0

=
−++−=

−−−
−−−

+

−−−
−−−

+

−−−
−−−

+

−−−
−−−

=H

 

 
Thus, the H statistic is 2.007. 
 
 K-4.3  Chebyshev (MVUE) Method.   
 
 K-4.3.1  Introduction.  For the Chebyshev (MVUE) method, first estimate the mean and 
variance using the minimum unbiased variance approach discussed in Appendix D. Then calcu-
late the )%1(100 α− UCL of the mean using: 
 

 ( )2
1 1 1

1ˆ ˆUCL 1 sα μ μ
α−

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 . 

 

The quantities 1μ̂  and ( )1
2 μ̂s are the MVUE estimates of the mean and standard deviation given 

in equations D-2 and D-3 in Appendix D. An example of using this method follows in Paragraph 
K-4.3.2. 
 
 K-4.3.2  Example of a Confidence Interval for the Mean (Lognormal Distribution), Che-
byshev MVUE Method.  Suppose chromium concentrations (mg/kg) measured at a site are as fol-
lows: 
 

0.378 1.411 1.089 0.918 
0.073 0.518 2.240 0.111 
1.246 2.251 1.967 1.894 
1.414 13.844 1.222 0.962 
0.094 0.247 0.371 0.056 
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 K-4.3.2.1  ProUCL was used to determine the 95% UCL for the population mean. The 
data follow a lognormal distribution (Shapiro-Wilk p = 0.905 on the log-transformed data). The 
sample size is 20, and the standard deviation of the log-transformed values is 1.39. Table J-2 rec-
ommends using the 95% Chebyshev MVUE UCL as the 95% UCL for the population mean un-
der these conditions. 
 
 K-4.3.2.2  The MVUE estimate of the mean, 1μ̂ , is 1.66, and the standard deviation of 
the estimate of the mean, ( )1

2 μ̂s , is 0.607. Therefore, 
 

 ( ) ( )22
0.95 1 1

1 1ˆ ˆUCL 1 1.66 1 0.607 4.30
0.05

sμ μ
α

⎛ ⎞ ⎛ ⎞= + − = + − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

 
 K-4.4  Hall’s Bootstrap Method.   
 
Although Hall’s Bootstrap is a nonparametric method related to the Bootstrap technique pre-
sented in Paragraph K-5, a limited presentation will be given here because EPA guidance 
(OSWER 9285.6-10) specifically recommends this technique for calculating the UCL of a log-
normal population under certain situations described in Table K-4. The method adjusts for bias 
and skewness in the data (OSWER 9285.6-10). Directions for implementing Hall’s Bootstrap are 
given in Paragraph K-4.4.1 and results of Hall’s method from ProUCL Version 3.0 are presented 
in Paragraph K-4.4.2. The directions for performing the bootstrap method are presented for illus-
tration only, as bootstrap methods require too many arithmetic calculations for manual calcula-
tions to be practical. 
 

 K-4.4.1  Directions for Implementing Hall’s Bootstrap Method for a )%1(100 α−  UCL.  
Let nxxx ,,, 21 K  represent n randomly sampled concentrations. 
 
 K-4.4.1.1  Compute the sample mean,  
 

 ∑
=

=
n

i
ix

n
x

1

1 . 

 
 K-4.4.1.2  Compute the sample standard deviation,  
 

 ( )∑
=

−=
n

i
i xx

n
s

1

21 . 

 
 K-4.4.1.3  Compute the sample skewness,  
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 ( )∑
=

−=
n

i
i xx

ns
k

1

3
3

1 . 

 
 K-4.4.1.4  Do the following a large number of times: 
 
 K-4.4.1.4.1  Generate a simple random sample of n values from nxxx ,,, 21 K  with re-
placement. 
 
 K-4.4.1.4.2  Compute the sample mean, ix , standard deviation, is , and skewness, ik , of 
the sample found in K-4.4.1.4.1. 
 
 K-4.4.1.4.3  Compute the Studentized mean,  
 

 
( )

i

i
i s

xx
W

−
= . 

 
 K-4.4.1.4.4  Compute Hall’s statistic,  
 

 
n

kWkWk
WQ iiiii

ii 6273

322

+++= . 

 
 K-4.4.1.4.5  Sort all the values, iQ , in ascending sequence and calculate the αth lower 
quantile, αQ . 
 
 K-4.4.1.4.6  Calculate  
 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+= 1

6
13 3

1

n
kQk

k
W α  . 

 
The one-sided %100)1( α−  upper confidence limit is WsxUCL −=−α1 . 
 
 K-4.4.2  Example of a Confidence Interval for the Mean (Lognormal Distribution), Hall’s 
Bootstrap.  Suppose chromium concentrations (mg/kg) measured at a site are as follows: 
 
 0.331 0.104 
 68.977 0.022 
 0.908 2.044 
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 140.605 0.093 
 157.359 0.213 
 
ProUCL was used to determine the 95% UCL for the population mean. The data follow a log-
normal distribution (Shapiro-Wilk p = 0.842 on the log-transformed data). The sample size is 10, 
and the standard deviation of the log-transformed values is 3.27. Table K-4 recommends using 
Hall’s Bootstrap to estimate the 95% UCL for the population mean under these conditions. The 
Bootstrap algorithm was run with the result UCL0.95 = 71.4 mg/kg. Because this result is based 
on random sampling, it may change with repeated runs. As a comparison, the Land method 95% 
UCL for this data is over 3,240,000 mg/kg (an unrealistically large value). 
 
 K-4.4.3  Confidence Interval for a Percentile–Tolerance Interval (Lognormal Distribu-
tion).  A lognormal confidence interval for the p100th percentile of a lognormal distribution, Xp, 
with %100)1( α− confidence, can be derived by using the log-transformed data with the equa-
tions for the normal confidence interval. When )(XLnY =  is normal (i.e., X is lognormal), given 
a set of sample values y1, y2…yn with sample mean y  and standard deviation s , the exponent of 
y  is an estimate of the 50th percentile (median) of X (X0.5):  
 
 )exp(5.0 yx =  . 
 
 K-4.4.3.1  The two-sided )%1(100 α− confidence interval for the median of X is: 
 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− −−−

n

st
y

n

st
y nn 1,211,2 exp,exp αα .  

 
 K-4.4.3.2  In general, if X is lognormal and ),(XLnY =  then an estimate xp of the p100th 
percentile of X (Xp) is obtained by first calculating an estimate of Yp (the p100th percentile of Y), 
 
 styy npp 1, −+=  
 
and then performing the inverse transformation (exponentiation) on this quantity. The (maximum 
likelihood) estimate of the percentile Xp in terms of the original variable (X) is: 
 
 ( )styyx nppp 1,exp)exp( −+== . 
 
 K-4.4.3.3  A one-sided upper confidence limit for the percentile Xp is calculated as fol-
lows: 
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 )exp( ,,1 sgy npα−′+  for p > 0.5 . 
 
 K-4.4.3.4  The term in parentheses is simply a confidence limit for a normal percentile or 
tolerance limit as described in Paragraph K-3.4. 
 
 K-4.4.3.5  A two-sided tolerance interval is calculated as follows: 
 
 ( )sgysgy npnp ,,1,,1 exp(),exp( αα −− +−  . 
 
 K-4.4.4  Prediction Interval (Lognormal Distribution).  A lognormal prediction inter-
val can be calculated using the log-transformed data with the process for developing normal pre-
diction intervals. When X is lognormal and Y = Ln(X) with sample mean y  and standard 
deviation s, then the prediction interval for the next k observations in the original scale is: 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
− −−−

n

st
y

n

st
y nknk

/11
exp,

/11
exp 1,211,2 αα  . 

 
K-5 Distribution-Free Statistical Intervals. 
 
 K-5.1  Introduction.  The one-sided Chebyshev inequality for a mean can be used when 
no distribution can be assumed to fit the data. Regardless of the underlying probability distribu-
tion of some variable X, the following inequality will be satisfied for the (1 – α)100% UCL of 
the population mean μ: 
 

 1(1 )100% UCL 1x
n

σα
α

⎛ ⎞− ≤ + − ⎜ ⎟
⎝ ⎠

 . 

 
 K-5.1.1  The right-hand side of the inequality serves as a conservative estimate of the 
UCL. However, as the population standard deviation σ is typically unknown, the UCL is usually 
estimated as follows: 
 

 1(1 )100% UCL 1 sx
n

α
α

⎛ ⎞− ≈ + − ⎜ ⎟
⎝ ⎠

 . 

 
 K-5.1.2  Unfortunately, because the sample standard deviation population (s) is being 
used to estimate the population standard deviation (σ), the population mean may not actually be 
less than this limit at the prescribed level of confidence when the variance or skewness is large, 
especially for small sample sizes. See OSWER 9285.6-10 for more details. 
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 K-5.1.3  This one-sided Chebyshev UCL, based on the mean and standard deviation, is 
recommended for use with the lognormal distribution under certain conditions described in Table 
K-4. In that situation use the untransformed data to calculate x  and s. 
  
 K-5.2  Confidence Interval for the Mean.  If data do not follow either a normal or log-
normal distribution, EPA guidance (OSWER 9285.6-10) recommends using either the central 
limit theorem or Bootstrap resampling. Several methods are available for estimating confidence 
limits of the mean when no distributional assumptions are made. The Bootstrap and Jackknife 
procedures are nonparametric statistical techniques that can be used to construct approximate 
confidence intervals for parameters such as the population mean. These procedures are nonpara-
metric or distribution-free because they do not require assumptions about the data’s distribution 
(such as normal or lognormal). It should be noted that statistical methods that account for the 
data’s distribution, when used appropriately, are more efficient than the nonparametric methods. 
Directions for the Bootstrap and Jackknife methods for estimating a nonparametric confidence 
interval for θ , the parameter of interest, are given in Paragraphs K-5.2.1 and K-5.2.2, respec-
tively. Examples are presented in Paragraphs K-5.2.3 and K-5.2.4. It should be noted that the 
both the Bootstrap and Jackknife methods are usually performed using statistical software owing 
to the large number of manual calculations that would be required. The Paragraphs below illus-
trate how the calculations are done. 
 

 K-5.2.1  Directions for a Bootstrap Estimate of the Confidence Interval for θ .  Let 
nxxx ,,, 21 K be a random sample of size n.  

 
 K-5.2.1.1  The parameter of interest is θ  and a reasonable estimate of θ  is θ̂ . For exam-
ple, θ  is the mean and θ̂  is the minimum variance unbiased estimator (MVUE) of the mean 
(Appendix D). 
 
 K-5.2.1.2  Take n samples with replacement from the original set of random samples of 
size n, and define this new set of data as nxxx 11211 ,,, K . Note that the same result can be selected 
more than once. For this new data set, estimate θ̂  and denote it as 1̂θ . 
 
 K-5.2.1.3  Perform the previous step N times, each time calculating an estimate of θ̂ . 
Denote all N estimates of θ̂  as Nθθθ ˆ,,ˆ,ˆ

21 K . N should be considerably larger, such as 1000 or 
more. It is much easier to perform this simulation using a computer. 
 
 K-5.2.1.4  Estimate the Bootstrap estimate of θ , Bθ , from the N estimates of Iθ̂ , such that  
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 ∑
=

=
N

I
IB N 1

ˆ1 θθ   

 
for Ni ,,2,1 K= . 
 
 K-5.2.1.5  Derive the confidence interval for θ , with )%1(100 α− level of confidence, as 
( )UL θθ ,  where th

L 100)2/(αθ = percentile from the set of N estimates and th
U 100)2/1( αθ −=  

percentile from the set of N estimates (see Appendix G). A one-sided UCL is simply the 
th100)1( α−  percentile from the set of N estimates. 

 
 K-5.2.2  Example of the Bootstrap Method for Estimating a Nonparametric Confidence 
Interval for θ .  A confidence interval for the population mean (μ) will be calculated for chro-
mium concentrations in subsurface soil at Site A with 95% level of confidence. All chromium 
concentrations were detected so no proxy concentrations are needed to evaluate the data.  
 
 K-5.2.2.1  The data are as follows: 2.95, 5.17, 4.80, 4.53, 4.01, 5.91, 3.96, 4.81, 5.27, 
5.99, 4.60, 5.51, 4.72, 3.56, 4.22, 3.91, 5.81, 4.48, 5.10, 4.94, 4.76, 4.62, 4.72, 4.73, 3.21, 4.14, 
4.85, 4.25, 5.09, 3.68, 5.12, 6.60, 6.19, 3.15, 4.11, and 2.80 mg/kg.  
 
 K-5.2.2.2 An example of 10 samples with replacement taken from the original set of ran-
dom samples of size n = 36 is as follows: 2.95, 5.17, 5.91, 3.96, 4.80, 4.81, 4.53, 5.27, 4.01, and 
5.99 mg/kg. (Note that although replacement was adhered to, no sample’s values were actually 
“picked” twice.) 
 
 K-5.2.2.3 For this new data set, estimated mean is 74.41̂ =θ .  
 
 K-5.2.2.4 Perform the previous step N times, and each time calculating an estimate ofθ̂ . 
Using a statistical software package, 
 

 626.4ˆ1
1

== ∑
=

N

I
IB N

θθ  

 
for Ni ,,2,1 K= . 
 
 K-5.2.2.5 The confidence interval for θ , with 95% level of confidence reached upon 12 
repetitions, is 4.323 to 4.93. 
 
 K-5.2.3  Directions for a Jackknife Estimate of the Confidence Interval for θ .  Esti-
mateθ̂  with all n samples from the data set. 
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 K-5.2.3.1 Estimate )(̂iθ by removing the ith sample (for ni ,,2,1 K= ) from the original data 
set and use the same equation as was used to estimateθ̂ . 
 
 K-5.2.3.2 Estimate the arithmetic mean,θ~ , from the n estimates of )(̂iθ , such that  
 

 ∑
=

=
n

i
in 1
)(̂

1~ θθ   

 
for ni ,,2,1 K= . Note that the ith “pseudo-value” is defined as )(̂)1(ˆ

ii nnJ θθ −−= . 
 
 K-5.2.3.3 Calculate the Jackknife estimator of θ  (the average of the iJ  values), 
 

( ) θθθ ~)1(ˆ1ˆ
1

−−== ∑
=

nnJ
n

J
n

i
i . 

 
 K-5.2.3.4 Estimate the standard error of the Jackknife estimate, ( )θ̂J , by  
 

( ) ( )( )∑
=

−
−

=
n

i
iJ JJ

nn 1

2
ˆ

ˆ
)1(

1ˆ θσ
θ

. 

 
 K-5.2.3.5 Derive the confidence interval as 
 
 ( ) ( ) ( ) ( )( )

θαθα σθσθ ˆ1),2/(1ˆ1),2/(1 ˆˆ,ˆˆ
JnJn tJtJ −−−− +−  

 
with )%1(100 α−  level of confidence; 1, −npt is the critical value from the Student’s t-distribution 
for the p100th percentile and n – 1 degrees of freedom. If only a one-sided confidence interval is 
needed, then 1,11, −−− = nnp tt α . 
 
 K-5.2.4  Example of the Jackknife Method for Estimating a Nonparametric Confidence 
Interval for θ .  Using the same data set as for the Bootstrap example (Paragraph K-5.2.1), we 
will calculate a confidence interval for the mean (μ) using the Jackknife estimate with a 95% 
level of confidence.  
 
 K-5.2.4.1  Estimate 62.4ˆ =θ  with all 36 samples from the data set. 
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 K-5.2.4.2  Estimate )(̂iθ  for i = 1, 2 … n = 36. The results are listed in Table K-5.  
 
 K-5.2.4.3 Estimate the arithmetic mean, 
 

 75.4ˆ1~
1

)( == ∑
=

n

i
in

θθ . 

 
 K-5.2.4.4 Calculate the Jackknife estimator of θ  (the average of the iJ  values),  
 

 ( ) 62.4~)1(ˆ1ˆ
1

=−−== ∑
=

θθθ nnJ
n

J
n

i
i . 

 
 K-5.2.4.5 Estimate the standard error of the Jackknife estimate, ( )θ̂J , by  
 

 ( ) ( )( ) 15.0ˆ
)1(

1ˆ
1

2
ˆ =−

−
= ∑

=

n

i
iJ JJ

nn
θσ

θ
.  

 
 K-5.2.4.6  Derive the confidence interval,  
 
 ( ) ( )θα σθ ˆ1),2/(1 ˆˆ

JntJ −−±  
 
 ( ) ( ) 37.415.069.162.4ˆˆ

ˆ1),2/(1 =×−=− −− θα σθ JntJ   
 
 ( ) ( ) 87.415.069.162.4ˆˆ

ˆ1),2/(1 =×+=+ −− θα σθ JntJ .  
 
 K-5.2.4.7 The critical value from the Student’s t-distribution was found using Table B-23 
in Appendix B and linear interpolation. 
 
 K-5.3  Tolerance and Prediction Intervals.  An approximate two-sided nonparametric 
prediction interval to contain the next single observation from the population with ( ) %1001 α−  
confidence can be estimated from the sample as ( ) ( )( )ul xx ,  where 
 

 ( )1
2

+= nl α  
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 ( )1
2

1 +⎟
⎠
⎞

⎜
⎝
⎛ −= nu α  

 
and x(i) is the ith order statistic from the sample data (Helsel and Hirsch, 2003). If l or u is not an 
integer, linearly interpolate between the values of the two surrounding order statistics. One-sided 
prediction limits can be calculated by replacing α/2 with α when calculating the order statistic to 
use. An example calculation follows in Paragraph K-5.3.1. 
 
 K-5.3.1  Example of a One-Sided Nonparametric Prediction Limit for the Next Single 
Observation.  A 95% upper prediction limit for arsenic concentration at a single point in the fu-
ture is desired. Arsenic concentrations at three background wells were measured once each 
month for 12 months to yield 36 observations. Of the 36 observations, 19 were non-detects, so a 
nonparametric prediction limit will be calculated. The 95% upper prediction limit is calculated 
as: 
 

( ) [ ][ ]( ) [ ][ ]( ) ( )15.3513605.0111 xxxx nu === +−+−α  . 
 
Because 35.15 is not an integer, interpolate between the 35th and 36th order statistics. Suppose 

( )35x =12 ppb and ( )36x =13 ppb. Then the 95% upper prediction limit is estimated to be: 
 
 ( ) ( ) ( )( ) ( ) 15.12121315.01215.0 353635 =−+=−+ xxx ppb. 
 
If the result of the next observation were 8 ppb, we could conclude that arsenic concentration has 
not increased with 95% confidence. 
 
 K-5.3.2  Discussion.  Exact confidence for using various order statistics from a sample to 
create nonparametric prediction intervals and limits can be calculated using the methods de-
scribed in Hall et al. (1975). Their calculations expand to cover prediction intervals to contain k 
of m future observations instead of just a single future observation. 
 
 K-5.3.2.1  For small datasets, the method presented in Paragraph K-5.3.1 will require an 
order statistic that is smaller than the smallest observation in the dataset (for a minimum) or lar-
ger than the largest (for a maximum). In this situation, a nonparametric UTL or UPL is typically 
constructed using the minimum or maximum value of the set of observations. With high prob-
ability, the tolerance interval is designed to miss only a small percentage of the observations that 
arise from the same population as the data used to develop the tolerance limit. The coverage 
probability for the tolerance interval can be reported as either a minimum or an average value 
because, typically, we can only specify that the coverage probability of the interval exceed some 
level of confidence. We will use the average value. Given n measurements, using the maximum 
measurement as the UTL yields an average confidence of  
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 %100
1+n

n .  

 
Table K-5 
Estimate of )(̂iθ  for i = 1, 2 … n = 36 

i Mean θ̂  iJ  ˆ( )iJ J θ−  2ˆ( ( ))iJ J θ−  
1 4.67 2.8 –1.82 3.31 
2 4.67 2.95 –1.67 2.78 
3 4.66 3.15 –1.47 2.16 
4 4.66 3.21 –1.41 1.98 
5 4.65 3.56 –1.06 1.12 
6 4.65 3.68 –0.94 0.88 
7 4.64 3.91 –0.71 0.50 
8 4.64 3.96 –0.66 0.43 
9 4.64 4.01 –0.61 0.37 

10 4.63 4.11 –0.51 0.26 
11 4.63 4.14 –0.48 0.23 
12 4.63 4.22 –0.40 0.16 
13 4.63 4.25 –0.37 0.14 
14 4.62 4.48 –0.14 0.02 
15 4.62 4.53 –0.09 0.01 
16 4.62 4.6 –0.02 0.00 
17 4.62 4.62 0.00 0.00 
18 4.62 4.72 0.10 0.01 
19 4.62 4.72 0.10 0.01 
20 4.62 4.73 0.11 0.01 
21 4.61 4.76 0.14 0.02 
22 4.61 4.8 0.18 0.03 
23 4.61 4.81 0.19 0.04 
24 4.61 4.85 0.23 0.05 
25 4.61 4.94 0.32 0.10 
26 4.61 5.09 0.47 0.22 
27 4.60 5.1 0.48 0.23 
28 4.60 5.12 0.50 0.25 
29 4.60 5.17 0.55 0.30 
30 4.60 5.27 0.65 0.42 
31 4.59 5.51 0.89 0.79 
32 4.58 5.81 1.19 1.42 
33 4.58 5.91 1.29 1.67 
34 4.58 5.99 1.37 1.88 
35 4.57 6.19 1.57 2.47 
36 4.56 6.6 1.98 3.93 

 



EM 1110-1-4014 
15 Jan 07 
 

K-34 

 K-5.3.2.2  Thus, at least 19 samples are necessary to achieve 95% mean coverage. Addi-
tional information on constructing nonparametric tolerance and prediction limits can be found in 
EPA 68-W0-0025.  
 
 K-5.3.2.3  A prediction limit involves the confidence probability associated with predict-
ing that the next single observation will fall below the upper prediction limit, and is the same as 
the expected (mean) coverage of a similarly constructed UTL. Note that this is a special case for 
nonparametric prediction limits for the next single observation, not a general result. Furthermore, 
it can be shown that the probability of having k future samples all fall below the upper nonpara-
metric prediction limit is )/()1( knn +=−α  (i.e., the maximum value is the [ ] %100)/( knn +  up-
per prediction limit for k future measurements). Table B-11 in Appendix B lists these confidence 
levels for various choices of n and k. The false positive rate associated with a single prediction 
limit can be computed as one minus the confidence level. An example calculation follows in 
Paragraph K-5.3.3. 
 
 K-5.3.2.4  Balancing the ease with which nonparametric upper prediction limits are con-
structed is the fact that, given fixed numbers of original samples and future sample values to be 
predicted, the maximum confidence level associated with the prediction limit is also fixed. To 
increase the level of confidence, the only choices are to: i) decrease the number of future values 
to be predicted at any testing period, or ii) increase the number of original samples used in the 
test. Table B-11 of Appendix B can be used along these lines to plan an appropriate sampling 
strategy so that the false positive rate can be minimized and the confidence probability maxi-
mized to a desired level. 
 
 K-5.3.3  Example of a Nonparametric Prediction Limit for the Next k Observations.  A 
prediction limit for arsenic concentration at k = 2 points in the future is desired. Arsenic concen-
tration at three background wells was measured once each month for 6 months to yield 18 obser-
vations. As 9 of the 18 observations were non-detects, a nonparametric prediction limit will be 
calculated. The maximum detected result was 12 ppb, so this will be used as the upper prediction 
limit. Because n = 18 and k = 2, the probability of both future observations falling below the up-
per prediction limit of 12 is  
 

 %90%
218

18100%100 =
+

=
+ kn
n .  

 
Thus 12 ppb is a 90% upper prediction limit for two future observations. The results of the two 
future observations were 8 and 14 ppb. As one of the new observations exceeds 12 ppb, we can 
conclude that arsenic concentration has increased with 90% confidence. 

 
 K-5.4  Nonparametric Confidence Intervals for Percentiles.  A nonparametric confidence 
interval is based on an actual sample result and does not rely on any distributional assumptions. 
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The nonparametric confidence interval is generally wider and requires more data than the corre-
sponding normal distribution interval, and so the parametric distribution intervals should be used 
whenever it is appropriate. When n ≤ 20, the nonparametric confidence interval is calculated us-
ing the binomial distribution.  
 
 K-5.4.1  Given a set of measurements, x1, x2,...xn, to calculate a nonparametric confidence 
interval for the quantile Xp, it is necessary to first order the values of xi so that x(1) < x(2) <...< x(n). 
Therefore, the smallest value of the data set is x(1) and the largest is x(n). (Note the distinction be-
tween x1 and x(1); the former is the first measured value of the data set and the latter is the small-
est value of the data set.) A two-sided nonparametric confidence interval for a quantile Xp will be 
of the form: 
 
 )()( bpa xXx ≤≤  
 
where the probability that pX  lies in the above interval is α−1 : 
 

 α−=≤≤ 1)( )()( bpa xXxP  . 
 
 K-5.4.2  The ath largest value x(a) and bth largest value x(b) of the data set (i.e., the numeri-
cal values of a and b that satisfy the above equation) are determined using the binomial distribu-
tion (as will be discussed below). Unfortunately, because the values are selected from a finite set 
of n ordered values { x(i) }, confidence limits are essentially being constructed for a discrete 
rather than a continuous variable. In general it will not be possible to select a and b so that the 
above probability is exactly equal to α−1 . Therefore, for the two-sided α−1  confidence inter-
val, a and b are selected so that: 
 
 α−≥≤≤ 1)( )()( bpa xXxP . 
 
 K-5.4.3  Similarly, for an upper one-sided confidence interval for a percentile Xp it is de-
sirable to select b so that: 
 
 .1)( )( α−≥≤ bp xXP   
 
Find the lower bound )(ax  by selecting the value of a so that:  
 

2/),,1( α≤− pnaBin  and 2/),,( α>pnaBin   
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where ),,( pnkBin denotes the probability for the cumulative binomial distribution—the prob-
ability that an event with probability p of occurrence will happen less than or equal to k times out 
of n trials: 
 

 
0

!( , , ) ( ) (1 )
!( )!

k
i n i

i

nBin k n p P K k p p
i n i

−

=

⎡ ⎤
= ≤ = −⎢ ⎥−⎣ ⎦

∑  . 

 
 K-5.4.4  More information on the binomial distribution can be found in Appendix F. The 
values of n and p are known. Table B-1 of Appendix B lists values of the cumulative binomial 
distribution and lists various values of k for fixed values of p and n. Because p (the quantile) and 
n (the number of samples) are known, we can use Table B-1 to find the appropriate value of k. 
For example, one could start with 0=k , then 1=k , and so forth until 1−= ak  is the smallest 
value that satisfies the inequalities 2/),,1( α≤− pnaBin and 2/),,( α>pnaBin . The upper 
bound )(bx  is obtained by determining the smallest value of b that satisfies the relationship 
 
 α−≥−−− 1),,1(),,1( pnaBinpnbBin . 
 
 K-5.4.5  For example, let us calculate the two-sided nonparametric confidence limit for 
the 75th percentile (p = 0.75) for the 90% level of confidence ( 1.0=α ) for 16=n  so that: 
 
 .9.0)( )(75.0)( ≥≤≤ ba xXxP  
 
From Table B-1,  
 
 05.02/0271.0)75.0,16,8( =<= αBin  
 
and  
 
 05.02/0796.0)75.0,16,9( =>= αBin .  
 
Therefore, 9=a . Because 
 
 9.019094.00271.09365.0)75.0,16,8()75.0,16,14( =−>=−=− αBinBin  
 
the value for 151141 =+=+= kb . Therefore, the 90% confidence interval for the 75th percen-
tile is )15(75.0)9( xXx ≤≤ .  
 
 K-5.4.6  Similarly, find the one-sided )%1(100 α− upper confidence limit of pX , so that 
the smallest value of b satisfies the equation 
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α−≥−=≤ 1),,1()( )( pnbinBxXP bp . 

 
 K-5.4.7  Once b  is found from Table B-1, the thb  largest value, x(b), establishes the upper 

%100)1( α− confidence limit of Xp. For example, if ,5.0,20 == pn  and ,05.0=α  
 

94.0)5.0,20,13( =Bin  and .98.0)5.0,20,14( =Bin  
 
 K-5.4.8  Because .151141,95.0)5.0,20,14( =+=+=> kbBin  The 15th largest value of 
the data set, )15(x , is at least the 95% upper confidence limit of the 50th percentile: 

.95.0)( )15(5.0 ≥≤ xXP  
 
 K-5.4.9  If 20>n , the two-sided )%1(100 α− confidence interval )()( bpa xXx ≤≤ can be 
calculated using a normality approximation so that .1)( )()( α−≈≤≤ bpa xXxP  
 
 K-5.4.10  Calculate the following 
 
 )1(2/1 pnpZnpa −−= −α   
 
and 
 
 )1(2/1 pnpZnpb −+= −α  
 
where the percentile pZ  is the thp  quantile for the standard normal distribution obtained from 
Table B-15 of Appendix B. Round a an b to the nearest whole numbers and find the correspond-
ing order values )(ax and .)(bx  
 
 K-5.4.11  For the one-sided upper )%1(100 α−  confidence interval )(bp xX ≤ , where 

( ) α−≈≤ 1)(bp xXP , calculate 
 
 )1(1 pnpZnpb −+= −α . 
 
Round to the nearest whole number and find .)(bx  
 
 K-5.4.12  Maximum detected values can be used to make inferences about percentiles. In 
particular, assume that a set of detected values are ranked from lowest to highest so that x(n) de-
notes the maximum value. Also assume that the maximum detected value is less than some 
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threshold concentration (i.e., a risk-based limit) C: x(n) < C. It can be shown that, under these cir-
cumstances, if Xp is the p100th percentile of X, then  
 
 n

p pCXP −≥≤ 1)(  and n
p pCXP ≤> )(  . 

 
pX  is less than the threshold C with at least α−=− 11 np  confidence. 

 
 K-5.4.13  To find the value of n needed to achieve the desired level of confi-
dence %100)1( α− , n must be such that 
 
 α≤np . 
 
Therefore, the p100th percentile, Xp, will be less the decision limit C with at least %100)1( α−  
confidence if the maximum detected value is less than C (i.e., Cx n <)( ) and  
 
 )(/)( pLnLnn α≥ . 
 
 K-5.4.14  If, for example, 90.0=p  and 05.0=α , then 4.28≥n . If 29 samples are col-
lected and the maximum value is less than C, then one can be at least 95% confident that the 90th 
percentile is less than C. 
 
 K-5.4.15  The maximum is a non-parametric one-sided upper tolerance limit. Given a set 
of n observed measurements, there is (1 – α)100% = (1 – pn)100% confidence that at least 
p100% of future measurements will be less than the maximum. A two-sided tolerance interval to 
contain at least a proportion p of future measurements may be constructed using the minimum 
and maximum of a set of n observed measurements. There is  
 
 ( ) ( ) %100)1(1%1001 1−−−−=− nn ppnpα  
 
confidence that at least p100% of future measurements will fall between the minimum and maxi-
mum of set of n observed data points. For example, if n =50 and p = 0.95, then there is 72% con-
fidence that at least 95% of future measurements will fall between the minimum and maximum. 
 
K-5 Statistical Confidence Interval for Proportions.  Data from a binomial distribution are 
composed of only two responses—“pass” or “fail.” The population proportion, P, is based on ei-
ther the passing proportion or the failing proportion. The following discussion will (arbitrarily) 
define the proportion, p, as the proportion of failures. An estimate of this proportion can be de-
rived by p = k/n where k is the number of failures out of n samples. For example, in environ-
mental applications p could represent the proportion of results from samples below some 
decision limit, C. From this information we would like to estimate an interval, (PL, PU), which 
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contains the true proportion, P, of the distribution that is less (or greater) than C. The binomial 
distribution is a discrete distribution and so statistical intervals are approximate and tend to be 
conservative (Hahn and Meeker, 1991). The most frequent statistical interval calculated for a 
proportion is the confidence interval, so only it is presented here. 
 
 K-5.1  Discussion.  The equation for a conservative two-sided 100(1 – α) % confidence 
interval for a proportion is the following: 
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where Fγ,m,n is the γ100th percentile of the F distribution (Table B-7 of Appendix B) with m and n 
degrees of freedom. The lower limit, PL, is defined to be 0 if k = 0, and the upper limit, PU, is de-
fined to be 1 if k = n (Hahn and Meeker, 1991). 
 
 K-5.5.1  Likewise, a one-sided %100)1( α− LCL for a proportion would be: 
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while a one-sided %100)1( α− UCL for a proportion would be: 
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 K-5.5.2  If a large number of samples are available, these confidence intervals can be ap-
proximated. However, two restrictions apply to the data set: first, np ≥ 5 and second, n(1 – p) ≥ 
5. This approximated confidence interval is based on the normal distribution because when these 
two restrictions apply, data are approximately normally distributed. The equation for the ap-
proximated confidence interval is: 



EM 1110-1-4014 
15 Jan 07 
 

K-40 

 

 [ ]
n

ppZppp UL
)1(, 2/1

−
±= −α  

 

where 2/1 α−Z  is the th100)2/1( α−  percentile from a standard normal, n is the sample size, and p  
is the sample proportion (Devore, 1987). The one-sided upper confidence limit would be found 
by replacing 2/1 α−  with α−1  as follows: 
 

n
ppZppU

)1(
1

−
+= −α  . 

 
 K-5.2  Example of a Confidence Limit for a Proportion.  Groundwater concentrations of 
gasoline at a site are compared to a regulatory threshold of 35 micrograms per liter (μg/L). Sup-
pose out of 90 results, 11 of the samples have concentrations that exceed this regulatory thresh-
old, so the proportion of samples with detected concentrations exceeding the threshold is 

1222.090/11 ==p .  
 
 00.111222.090 =×=np  
 
 00.79)1222.01(90)1( =−×=− pn . 
 
As both np and n(1 – p) are greater than or equal to 5, the large sample normal approximation 
can be used 
 

 ( ) 078.0
90

1222.011222.0282.11222.0)1(
1 =

−
−=

−
−= − n

ppZppL α  

 
where Table B-15 of Appendix B is used to find the critical value 90.0Z =1.282. Because Lp  ex-
ceeds 0.05, we can accept that more than 5% of the concentrations of gasoline in groundwater at 
the site exceed the regulatory threshold as we conclude also in Appendix L, Paragraph L-8.2. 
 
K-6 Statistical Intervals for the Poisson Distribution (Number of Occurrences).  Data 
from a Poisson distribution are composed of only two mutually exclusive responses—“pass” or 
“fail” s—when the probability of one of the responses is small. Poisson distributions are com-
mon when counting the number of pass or fail occurrences over a time interval or the number of 
detections when a set of measured concentrations consists mostly of non-detects. The population 
rate of occurrence, μ, also called the mean rate of occurrence, is either based on the passing rate 
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or the failing rate. For this document, the rate of occurrence of the rare event is called the rate of 
“failure.” The Poisson distribution is a discrete distribution and so statistical intervals are ap-
proximate and tend to be conservative (Hahn and Meeker, 1991). An estimate of this rate of oc-
currence can be derived by:  
 
 nk /ˆ =μ  
 
where k is the number of failures out of n samples. 
 
 K-6.1  Confidence Interval for the Mean Occurrence Rate.  A two-sided %100)1( α−  
confidence interval for the mean occurrence rate is the following: 
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where 2

,νγχ is the γ 100th percentile of the chi-square distribution (Table B-2 of Appendix B) with 
v degrees of freedom.  
 
 K-6.1.1  A one-sided lower or upper %100)1( α−  confidence limit can be obtained by 
replacing 2

2,2 kαχ  with 2
2, kαχ  for a lower confidence limit or replacing 2

22,21 +− kαχ  with 2
22,1 +− kαχ  

for an upper confidence limit (Hahn and Meeker, 1991). 
 
 K-6.1.2  If a large number of samples is available (generally, if 20>n ), this confidence 
interval can be approximated. This approximated confidence interval is based on the normal dis-
tribution because, as the sample size increases, the data’s distribution tends towards normality. 
The equations for the approximated confidence interval are: 

 

 [ ]
n

ZUL
μμμμ α
ˆˆˆ,ˆ 2/1−±=   

 

where 2/1 α−Z  is the th100)2/1( α−  percentile from a standard normal, n is the sample size, and 
μ̂  is the mean sample rate of failure ( nk /ˆ =μ  when k is the number of failures in n samples) 
(Hahn and Meeker, 1991). 
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 K-6.2  Upper Tolerance Limit.  A Poisson tolerance interval, with p100% coverage and 
%100)1( α−  confidence, is calculated based on the directions given in Paragraph K-6.2.1, fol-

lowed by an example in Paragraph K-6.2.2. 
 
 K-6.2.1  Directions for Calculating a Poisson Tolerance Interval with p100% Coverage 
and %100)1( α−  Confidence.  Compute the sum of the Poisson counts of n samples: 
 

 ∑
=

=′
n

i
ixT

1
 . 

 
This is the sum of the detected values and one-half the sum of all the non-detected values. 
 
 K-6.2.1.1  Find the probable rate 
 

 2
22,12

1
+′−= Tn αχμ   

 
where 2

22,1 +′− Tαχ  is the th100)1( α−  percentile of the chi-squared distribution with 22 +′= Tν  
degrees of freedom. Table B-2 of Appendix B contains a table of critical values for the chi-
square distribution.  
 
 K-6.2.1.2  Compute the p100th percentile of the Poisson distribution with mean rate μ, by 
finding the least positive integer k such that 
 
 μχ 22

22,1 ≥+− kp .  
 
As above, the quantity 2k + 2 represents the degrees of freedom of the chi-squared distribution. 
The quantity k itself is the upper tolerance limit (UTL) for the Poisson distribution. In other 
words, for the smallest value of k for which  
 

 2
22,1

2
22,1

1
+′−+− ≥ Tkp n αχχ  

 
p100% of the measurements will be less than k with %100)1( α− confidence. If any sample ex-
ceeds the UTL, k, then there is significant evidence that this sample is different from the samples 
used to develop the UTL. 
 
 K-6.2.2  Example of Calculating a Poisson Tolerance Interval with p100% Coverage and 

%100)1( α−  Confidence.  A tolerance interval with 95% confidence (α = 0.05) and 95% cover-
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age (p = 0.95) is desired for 1,1-dicholorethene in groundwater at Site B. The background well 
values in Table K-6 were obtained. These data have more than 90% non-detects and the number 
of samples n = 90. 
 
 K-6.2.2.1  Calculate the sum of the Poisson counts: Sum the detections and to this value 
add one half the sum of the non-detects (one half the detection limit is being used for each non-
detect). 
 
 25.11)81.463.2138.0111.0()1236.7(5.0 =++++×=′T  
 
 22 +′= Tν = 2 (11.25) + 2 = 24.5 ≈ 25 
 

 209.0
902

1
2
1 2

25,95.0
2

22,1 =
×

== +′− χχμ α Tn
 

 
where 65.372

25,95.0
2

22,1 ==+− χχ α T  using Table B-2 of Appendix B. 
 
 K-6.2.2.2  So, we need to find the smallest value of k such that μχ 22

22,1 ≥+− kp ; that is, the 
value of k such that 418.02

22,05.0 ≥+kχ . Table B-2 of Appendix B shows that the smallest value 
number of degrees of freedom, v = 2k + 2, that satisfies the above equation is v = 4. Since 4 = 2k 
+ 2, k = 1.0.   

 
k df 2

0.005χ  
0.5 3 0.3518 
1 4 0.7107 
1.5 5 1.145 

 
 K-6.2.2.3  If any site groundwater sample exceeds the UTL of 1.0 μg/L derived from the 
background wells, then there is significant evidence that contamination at the site is elevated 
with respect to background.  
 
 K-6.2.3  Upper Prediction Limit.  To estimate a prediction limit using the Poisson model, 
the upper limit is estimated for an interval that will contain all of k future measurements of an 
analyte with )%1(100 α− confidence, given n previous measurements. The directions to calculate 
such a prediction limit are provided in Paragraph K-6.2.3.1 and followed by an example in Para-
graph K-6.2.3.2. 
 
 K-6.2.3.1  Directions for Estimating a Prediction Limit Using the Poisson Model.  Calcu-
late T ′ , the sum of the Poisson counts of n samples (e.g., for the background data set), as defined 
in Paragraph K-6.2.1.  
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 K-6.2.3.1.2  Calculate *

kT , the greatest total Poisson count for the next k samples (e.g., for 
the study area data set) at some level of confidence, 1 – α using the following equation:   
 

 ( )
4

1
2

22
* tnT

n
t

n
t

n
TTk ++′++

′
=  

 
where 1,/1 −−= nktt α  is the upper %100)/1( kα− percentile of the Student’s t-distribution with n – 
1 degrees of freedom, in Table B-23 of Appendix B.  
 
Table K-6 
Background Wells 
Well Location Result (µg/L) DL (µg /L) Well Location Result (µg /L) DL (µg /L) 
Site B-MW01  0.0819 SiteB-MW02  0.144 
SiteB-MW01  0.102 SiteB-MW02  0.0715 
SiteB-MW01  0.102 SiteB-MW02  0.0715 
SiteB-MW01  0.0715 SiteB-MW02  0.145 
SiteB-MW01  0.0436 SiteB-MW03  0.144 
SiteB-MW01  0.0436 SiteB-MW03  0.0715 
SiteB-MW01  0.122 SiteB-MW03  0.0715 
SiteB-MW02  0.0819 SiteB-MW03  0.0715 
SiteB-MW02  0.102 SiteB-MW04  0.144 
SiteB-MW02  0.102 SiteB-MW04  0.0715 
SiteB-MW02  0.0715 SiteB-MW04  0.0715 
SiteB-MW02 0.111  SiteB-MW04  0.0715 
SiteB-MW02  0.0436 SiteB-MW05  0.144 
SiteB-MW02  0.122 SiteB-MW05  0.0715 
SiteB-MW03  0.0819 SiteB-MW05  0.0715 
SiteB-MW03  0.102 SiteB-MW05  0.0715 
SiteB-MW03  0.102 SiteB-MW06  0.0715 
SiteB-MW03  0.0715 SiteB-MW06  0.0715 
SiteB-MW03  0.0436 SiteB-MW06  0.0715 
SiteB-MW03  0.0436 SiteB-MW06  0.145 
SiteB-MW03  0.122 SiteB-MW01  0.116 
SiteB-MW04  0.0819 SiteB-MW01  0.116 
SiteB-MW04  0.102 SiteB-MW01  0.0492 
SiteB-MW04  0.102 SiteB-MW01  0.0492 
SiteB-MW04  0.0715 SiteB-MW02  0.116 
SiteB-MW04  0.0436 SiteB-MW02 0.138  
SiteB-MW04  0.0436 SiteB-MW02  0.0492 
SiteB-MW04  0.122 SiteB-MW02  0.0492 
SiteB-MW05  0.0819 SiteB-MW03  0.116 
SiteB-MW05  0.102 SiteB-MW03  0.116 
SiteB-MW05  0.102 SiteB-MW03  0.0492 
SiteB-MW05  0.0715 SiteB-MW03  0.0492 



EM 1110-1-4014 
15 Jan 07 

 

K-45 

Well Location Result (µg/L) DL (µg /L) Well Location Result (µg /L) DL (µg /L) 
SiteB-MW05  0.0436 SiteB-MW04  0.116 
SiteB-MW05  0.0436 SiteB-MW04  0.116 
SiteB-MW05  0.122 SiteB-MW04  0.0492 
SiteB-MW06  0.0819 SiteB-MW04  0.0492 
SiteB-MW06  0.102 SiteB-MW05  0.116 
SiteB-MW06  0.102 SiteB-MW05  0.116 
SiteB-MW06  0.0715 SiteB-MW05 2.63  
SiteB-MW06  0.0436 SiteB-MW05  0.0492 
SiteB-MW06  0.0436 SiteB-MW06  0.116 
SiteB-MW06  0.122 SiteB-MW06  0.116 
SiteB-MW01  0.144 SiteB-MW06 4.81  
SiteB-MW01  0.0715 SiteB-MW06  0.0492 
SiteB-MW01  0.0715    
SiteB-MW01  0.0715    

 
 K-6.2.3.1.2  If the sum of Poisson counts for the next k samples is greater than the upper 
prediction limit *

kT , then there is significant evidence of a difference in the new samples, com-
pared to previous samples. 
 
 K-6.2.3.2  Example of Estimating a Prediction Limit Using the Poisson Model.  Suppose 
a prediction limit for the next two observations with 99% confidence is desired for 1,1-
dicholorethene from Site B with the following background wells. NOTE: These data have more 
than 90% non-detects. (See data table in Paragraph K-6.2.2.) 
 
 K-6.2.3.2.1  Calculate the sum of the Poisson counts:  
 
 25.11)81.463.2138.0111.0()1236.7(5.0 =++++×=′T  
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where n = 90 and 639.289,995.0)190(,2)01.01(1,/1 === −−−− ttt nkα  using Table B-23 of Appendix B 
and linear interpolation. 
 
 K-6.2.3.2.2  To test the upper prediction limit, if the sum of the Poisson counts for the 
next k samples (k = 2) is greater than *

kT  (1.10), then there is significant evidence the contamina-
tion in the site wells is elevated relative to the background wells. 
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APPENDIX L 
Hypothesis Testing—Simple Cases 

 
L-1 Introduction.  This Appendix provides an extensive discussion of the statement of hy-
potheses (null and alternative) and the consequences deriving from that choice. Also, a general 
introduction of the basic types of hypothesis testing commonly employed in environmental op-
erations is provided. Further reading on the foundations of hypothesis testing can be found in 
EPA 600/R-96/055, QA/G-4. Additional reading on the one-sample hypothesis tests presented 
below can be found in EPA 600/R-96/084, QA/G-9. 
 
L-2 Translating Objectives into Statistical Hypotheses.  A data user’s question, or a deci-
sion rule from the DQO process, must be translated into a precise statistical statement to be 
tested using environmental data. Such a statement is called a hypothesis. It includes a null hy-
pothesis (H0) and an alternative hypothesis (HA). The null hypothesis is a baseline condition pre-
sumed to be true in the absence of strong evidence to the contrary, and the alternative hypothesis 
is the opposite condition that bears the burden of proof. In other words, unless it is demonstrated 
that the alternative hypothesis is correct based upon weight of evidence, the baseline condition is 
retained. 
 
 L-2.1  A hypothesis test consists of the following elements. 
 
 L-2.1.1  It has a quantitative population parameter of interest describing the feature of the 
environment that the data user is investigating, such as a mean, median, or proportion, 
 
 L-2.1.2  It has a numerical value to which the parameter of interest will be compared, 
such as a regulatory or risk-based threshold or a similar parameter from another population (i.e., 
comparison to a reference site) or time (i.e., comparison to a prior time). 
 
 L-2.1.3  It has a relation that specifies precisely how the parameter will be compared to 
the numerical value, such as “is equal to” or “is greater than.” 
 
 L-2.2  If the data user is interested in drawing inferences about only one population, the 
null and alternative hypotheses are stated in terms that relate the true value of the parameter to 
some fixed threshold value. A typical example of this one-sample problem in environmental 
studies is when the concentration of a contaminant is compared to a fixed regulatory limit or 
threshold value. For example, a data user may wish to determine whether the true mean concen-
tration (µ) of the herbicide atrazine in groundwater at a hazardous waste site is greater than a 
fixed threshold value C, determined from a human or ecological risk assessment. If the decision 
maker wishes to “prove” that the contamination is less than C, it is initially assumed that the true 
(population) mean concentration is greater than or equal to C. This assumption is known as the 
null hypothesis and is denoted as H0. If the data provide compelling evidence that the null hy-
pothesis is false, then the null hypothesis is rejected and it would be concluded that the popula-
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tion mean concentration is less than C. The opposite conclusion is known as the alternative hy-
pothesis and is denoted as HA or H1. For this example, the null and alternative hypotheses can be 
stated as follows: 
 
 CHCH A <≥ μμ :,:0  . 
 
 L-2.2.1  The null hypothesis (H0) is the mean is greater than or equal to the threshold 
value C. The alternative hypothesis (HA) is the opposite condition: the mean is less than the 
threshold value C. 
 
 L-2.2.2  If the decision maker wishes to demonstrate that the true mean is greater than the 
threshold value, the data must provide compelling evidence to reject this presumption, and the 
hypotheses can be stated as follows: 
 
 CHCH A >≤ μμ :,:0  . 
 
 L-2.2.3  Note that, thus far, two possible null hypotheses, μ ≤ C and μ ≥ C, have been dis-
cussed. Depending upon the data quality objectives of the project, it is possible to legitimately 
assign either alternative to the null hypothesis. Because of this freedom or ambiguity, the most 
appropriate assignment must be determined from the project’s data quality objectives. 
 
 L-2.2.3  Lastly, it should be noted that the null and alternative hypotheses for the exam-
ples presented above would be used for a one-sample, one-tailed statistical test. Typically, the 
sample mean of some set of measured concentrations would be statically compared to the thresh-
old, C. The test is one-sample in nature because one data set (from one population) is used to 
calculate the test statistic, the sample mean. If, however, the statistical test entailed the use of two 
different data sets, in which each was potentially drawn from a separate population, it would be 
described as a two-sample test. The test is one-tailed in nature when the null hypothesis is an 
inequality. Although less common for environmental applications, the null and alternative hy-
potheses for the corresponding one-sample two-tailed test are as follows: 
 
 CHCH A ≠= μμ :,:0   (i.e., μ > C or μ < C) . 
 
 L-2.2.4  The null hypothesis is that the population mean is equal to C and the alternative 
hypothesis is that the population mean is either greater than or less than C.  
 
 L-2.3  If two populations are being compared, the null and alternative hypotheses are 
stated in terms that compare the true parameter value of one population to the corresponding true 
parameter value of the other population. A common example of this two-sample problem is 
when a potentially contaminated waste site is compared to a reference area using samples col-
lected from the respective areas. In this situation, the hypotheses often are stated in terms of the 
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difference between the two parameters; for example, the difference between the mean site con-
centration and the mean background concentration: 
 
 0:,0:0 >−≤− BackgroundSiteABackgroundSite HH μμμμ  . 
 
 L-2.3.1  The hypothesis above would be used for a two-sample, one-tailed statistical test. 
As previously stated, the null and alternative hypotheses must be determined from project data 
quality objectives. Environmental regulations may specify particular null and alternative hy-
potheses. For example, the null hypothesis for a RCRA facility groundwater monitoring program 
is as follows: The concentration in down-gradient groundwater is less than or equal to the back-
ground concentration. When the null hypothesis is not specified by regulation, however, this de-
termination should be made by carefully considering the consequences of making decision errors 
and taking the wrong actions. Selecting the null hypothesis is extremely important to the out-
come of the decision process. The same set of sample data from a decision unit can lead to dif-
ferent decisions, depending on which possibility was selected as the null hypothesis.  
 
 L-2.3.2  Typically, hypothesis tests are established to prove a desired hypothesis. The 
condition or alternative that requires proof is selected as the alternative or research hypothesis. 
The alternative hypothesis is accepted (via burden of proof) when the null hypothesis is rejected 
(that is, disproved) based upon the weight of the evidence.  
 
 L-2.4  EPA 600/R-96/055, QA/G-4 recommends that the null hypothesis be defined as 
the true condition associated with the “more severe decision error”; that is, the more undesirable 
outcome if a wrong decision were made. For example, when the mean concentration of a con-
taminant is compared to a risk-based action level, C, the most severe decision error often consists 
of concluding μ < C when μ ≥ C is the true condition. Therefore, as per EPA guidance, the null 
hypothesis is often μ ≥ C. In other words, it would typically be assumed that the site is “dirty” 
(H0: μ ≥ C) until the weight of evidence demonstrates that the site is “clean” (HA: μ < C), the hy-
pothesis that one wishes to demonstrate.  
 
 L-2.5  Rather than defining the null hypothesis based on the most severe condition, a sec-
ond approach consists of defining the null hypothesis based on the least probable condition (or, 
equivalently, the alternative hypothesis based on the most probable condition). According to this 
approach, if a large amount of existing information suggests that one hypothesis is extremely 
likely, then this hypothesis would be defined as the alternative hypothesis. The advantage of this 
approach is that a large number of data may not be necessary to provide overwhelming evidence 
that the null hypothesis is false. For example, if the waste from an incinerator was previously 
hazardous and the waste process has not changed, it may be more cost-effective to define the al-
ternative hypothesis as “the waste is hazardous” (HA: μ ≥ C) and the null hypothesis as “the 
waste is not hazardous” (H0: μ < C). This approach generally will not result in the same null hy-
pothesis as the approach EPA recommends. The most protective alternative for H0 will not nec-
essarily be the least probable alternative for H0 (i.e., the most probable alternative for HA). 
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Table L-1 
Commonly Used Statements of Statistical Hypotheses 

 
Type of Decision 

 
Null Hypothesis 

Alternative Hypothe-
sis 

Compare environmental conditions to a fixed threshold value, 
such as a regulatory standard or acceptable risk level; presume 
that the true condition is less than the threshold value. 

 
H0: Θ ≤ C 

 
HA: Θ > C 

Compare environmental conditions to a fixed threshold value; 
presume that the true condition is greater than the threshold 
value. 

 
H0: Θ ≥ C 

 
HA: Θ < C 

Compare environmental conditions to a fixed threshold value; 
presume that the true condition is equal to the threshold value 
and the data user is concerned whenever conditions vary 
significantly from this value. 

 
 

H0: Θ = C 

 
 

HA: Θ ≠ C 

Compare environmental conditions associated with two 
different populations to a fixed threshold value (δ0), such as a 
regulatory standard or acceptable risk level; presume that the 
true condition is less than the threshold value. If it is presumed 
that conditions associated with the two populations are the 
same, the threshold value is 0. 

H0: Θ1 – Θ2 ≤ δ0 
 
If δ0 = 0, 
 
H0: Θ1 – Θ2 ≤ 0 
H0: Θ1 ≤ Θ2 

HA: Θ1 – Θ2 > δ0 
 
If δ0 = 0, 
 
HA: Θ1 – Θ2 > 0 
HA: Θ1 > Θ2 

Compare environmental conditions associated with two 
different populations to a fixed threshold value (δ0), such as a 
regulatory standard or acceptable risk level; presume that the 
true condition is greater than the threshold value. If it is 
presumed that conditions associated with the two populations 
are the same, the threshold value is 0. 

H0: Θ1 – Θ2 ≥ δ0 
 
If δ0 = 0, 
 
H0: Θ1 – Θ2 ≥ 0 
H0: Θ1 ≥ Θ2 

HA: Θ1 – Θ2 < δ0 
 
If δ0 = 0, 
 
HA: Θ1 – Θ2 < 0 
HA: Θ1 < Θ2 

Compare environmental conditions associated with two 
different populations to a fixed threshold value (δ0), such as a 
regulatory standard or acceptable risk level; presume that the 
true condition is equal to the threshold value. If it is presumed 
that conditions associated with the two populations are the 
same, the threshold value is 0. 

H0: Θ1 – Θ2 = δ0 
 
If δ0 = 0, 
 
H0: Θ1 – Θ2 = 0 
H0: Θ1 = Θ2 

HA: Θ1 – Θ2 ≠ δ0 
 
If δ0 = 0, 
 
HA: Θ1 – Θ2 ≠0 
HA: Θ1 ≠ Θ2 

 
 L-2.6  Table L-1 summarizes common environmental decision rules and the correspond-
ing hypotheses. The population parameter of interest (e.g., μ) in this table is denoted by the sym-
bol Θ and the difference between two population parameters is denoted as Θ1 – Θ2, where Θ1 
represents the parameter of the first population (such as a constituent from a hazardous waste 
site) and Θ2 represents the parameter of the second population (such as a constituent from back-
ground). The use of Θ is intended to avoid using the terms “population mean” or “population 
median” repeatedly because the structure of the hypothesis test remains the same regardless of 
the population parameter. The fixed threshold value is denoted as C, and the difference between 
two parameters is denoted as δ0 (often the null hypothesis is defined such that δ0 = 0). 
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 L-2.7  As previously discussed, hypothesis tests may be one-tailed or two-tailed, depend-
ing on the specified null and alternative hypotheses. The first, second, fourth, and fifth rows of 
Table L-1 are examples of one-tailed hypothesis tests. The third and sixth rows are examples of 
two-tailed tests. Most hypotheses connected with environmental monitoring are one-tailed be-
cause high pollutant levels can cause harm to humans or ecosystems, whereas lowered concen-
trations are of little, if any, concern. 
 
L-3 Decision Errors Associated with Hypothesis Tests.  Table L-2 presents all of the possi-
ble scenarios that can result from a statistical hypothesis test. Two correct decisions and two in-
correct decisions are possible. The probability of each event is presented in parenthesis. 
 
Table L-2 
Conclusions Associated with Any Statistical Hypothesis Test 

True Hypothesis (Actual site conditions)  
H0 True Ha True 

 
Do Not  
Reject H0 

Correct decision 
Confidence Level =  

(1 – α)100% 

Incorrect decision 
False Acceptance of H0 

Type II error tolerance = β 

 
Decision 
 
(Conclusion from 
sample data) 

 
Reject H0 

Incorrect decision 
False Rejection of H0 

Type I error tolerance = α 

Correct decision 
Power of test =  

(1 – β)100% 

 
 L-3.1  The two incorrect answers for a hypothesis test are the following. 
 
 L-3.1.1  False rejection of H0, or Type I error.  The null hypothesis is rejected when the 
null hypothesis is true. The probability for a Type I error is defined as the level of significance. 
The maximum allowable probability for a Type I error is typically denoted by the symbol α. The 
level of confidence is defined as one minus the level of significance. Thus, the minimum level of 
confidence for a correct decision is 1 – α. 
 
 L-3.1.2  False acceptance or Type II error.  The null hypothesis is accepted (more accu-
rately, not rejected) when the null hypothesis is false. The maximum allowable probability for a 
Type II error is denoted by the symbol β. The power of the test is defined as one minus the Type 
II error probability. Therefore, the minimum power is 1 – β. 
 
 L-3.2  A false rejection decision error occurs when it is concluded, from the observed 
data, that the null hypothesis is false when it is actually true. (This is sometimes called a “false 
positive.”) A false acceptance decision error occurs when it is concluded that the null hypothesis 
is true when it is really false. (This is sometimes called a “false negative.”) For example, suppose 
the null hypothesis states that the true value of the parameter of interest exceeds the action level. 
If the null hypothesis is actually correct and the sample data, by chance, contained an abnormally 
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large proportion of low values, it would be concluded that the true value did not exceed the ac-
tion level; therefore, a false rejection decision error would occur. 
 
 L-3.3  Three different equivalent approaches can be used to perform hypothesis tests: 
“The confidence interval,” “p-value,” and “critical value” approaches. Table L-3 illustrates the 
use of each of these three approaches for hypothesis testing. 
 
Table L-3 
Relationship Between Hypothesis Tests and Confidence Intervals 

 
Hypotheses 

 
 

 
p-Value 

Approach 
Reject H0 when 

 
Critical Value Approach  

Reject H0 when 

 
Confidence Interval Approach 

Reject H0 when 

 

0 :H CΘ =  

:AH CΘ ≠  

 
p < α 

Test statistic less than or greater 
than critical values. Example: 

2, 1nt tα −
<  or 1 2, 1nt t α− −

>  

Two-sided 1 – α confidence 
interval for Θ does not  
contain C 

0 :H CΘ ≥  

:AH CΘ <  

 
p < α 

Test statistic less than “critical 
value. 
Example: , 1nt tα −

< . 

One-sided 1 – α upper  
confidence interval limit for Θ is 
less than C: UCL < C 

0 :H CΘ ≤  

:AH CΘ >  

 
p < α 

Test statistic exceeds “critical 
value.” 
Example: 1 , 1nt t α− −

> . 

One-sided 1 – α lower  
confidence limit for Θ is greater 
than C: LCL > C 

 
 L-3.4  Table L-3 lists the possible null hypotheses for a one-sample statistical test. The 
objective is to determine if some population parameter of interest,Θ  (the value of which is typi-
cally known) equals, is less than, or is greater than some fixed threshold value C. For the critical 
value approach for hypothesis testing, the decision to reject the null hypothesis is essentially de-
termined by calculating some sample test statistic and comparing the value of the sample test sta-
tistic to a threshold or “critical value” for the sample statistic. If the sample statistic is greater 
than or less than the “critical value” (depending upon the null hypothesis selected), the null hy-
pothesis is rejected. 
 
 L-3.5  Confidence intervals are directly related to hypothesis tests. Whenever a hypothe-
sis test can be used to evaluate a parameter of interest (such as the mean, variance, median, etc.), 
a confidence interval also can be estimated and used to evaluate the same parameter. An equiva-
lent approach consists of the following: Use the sample data to derive an estimate of the popula-
tion parameter Θ̂ , construct a confidence interval for Θ using the estimate Θ̂ , and determine 
whether C falls within the confidence interval for Θ . If C does not fall within the confidence in-
terval forΘ , then the null hypothesis is rejected. This is referred to as the “confidence interval 
approach for hypothesis testing.” 
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 L-3.6  A third approach for hypothesis testing is referred to as the “p-value approach for 
hypothesis testing.” The “p-value” is the probability of obtaining the calculated sample statistic if 
the null hypothesis is true. If the p-value is sufficiently small, that is, if p < α, where α is the 
Type I error tolerance, then the null hypothesis is rejected. All three approaches are illustrated 
below. This document predominately uses the critical value approach for hypothesis tests. 
 
L-4 Illustration of Hypothesis Testing.  To illustrate hypothesis testing, a one-population 
test to threshold value C is considered, with the following null and alternative hypotheses: 
 
 CHCH A <≥ μμ :,:0  . 
 
Assume that the variable X is normally distributed with an unknown population mean μ but a 
known standard deviation σ. A single sample measurement x is compared to the threshold value, 
C, to determine whether or not to reject the null hypothesis, H0: μ ≥ C. Because the standard de-
viation of the population (σ) typically would not be known for environmental applications, the 
example is not realistic, but serves only to illustrate the concept of hypothesis testing. Figure L-1 
illustrates the decision errors for hypothesis testing. 
 
 L-4.1  Type I Error Tolerance and the Rejection of the Null Hypothesis.  If the null hy-
pothesis is true with μ = C, a distribution of measured values of X would be obtained, as shown 
by the blue normal curve centered about μ = C. The probability that a measurement, x, would be 
less than the critical value, Xα, is equal to α (refer to the region shaded in blue). The value of Xα 
depends upon the α value selected. The value of α is determined from the project’s data quality 
objectives but is usually some acceptably small positive number (e.g., α = 0.01 or 0.05). As the 
probability a measurement, x, will be less than Xα is acceptably small when μ = C, the null hy-
pothesis (H0: μ ≥ C) is rejected when a measurement of x < Xα  is obtained. (The null hypothesis 
is retained when x > Xα.) The value α represents the tolerance for Type I error; that is, the 
maximum acceptable probability for rejecting H0 when H0 is actually true. When H0 is μ ≥ C, the 
Type I error can be roughly described as the probability of concluding that a “dirty” site is 
“clean.”  
 
 
 L-4.1.1  When X is normal with known standard deviation, σ, it is convenient to “stan-
dardize” the variable X using the linear transformation: 
 

 
σ

μ−
=

XZ  . 

 
 L-4.1.2  The variable Z is a standard normal variable. If x < Xα, it follows that 
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σ

μ
σ

μ α
α

−
=<

−
=

X
Zxz  . 

 
 L-4.1.3  The quantity Zα is the α100th percentile of the standard normal distribution. 
Thus, if the null hypothesis μ = C is true and x < Xα, then 
 

 ασ
ZCxz <

−
=  . 

 
 

Xα

β 

C* C 

Gray Region 
C  −  C* 

 
=  (Z1 - α 

 +   Z1 - β)  σ  

α 

Hypothesis Test: H 0: μ  ≥  C, 
      H A: μ  < C 

Type I Error = 
P(x  <  Xα 

|  μ  =  C)  =   α 
Type II Error = 

P(x  ≥   X α   |  μ   =   C* )  =   β 

σ Ζ1−β

If  x < X α, reject H 0
  

If  x  ≥  Xα,   accept   H 0

Gray Region

σ Ζ1−α

 
 

Figure L-1.  Decision errors associated with a hypothesis test. 
 
 L-4.1.4  Because H0 is rejected when x < Xα, it may be also be rejected when the test sta-
tistic z < Zα. In this context, the percentile Zα is called the “critical value.” If the sample statistic 
z is less than the “critical value” Zα, it is often stated that the null hypothesis is rejected at the 
“α100% level of significance” or, equivalently, at the “(1 – α)100% level of confidence. ” This 
is a convenient approach as the sample test statistic z can be calculated and compared to a de-
sired percentile of the standard normal distribution (Zα), which is readily available from a statis-
tical table. The comparison of a sample statistic such as z to some percentile Zα to determine 
whether or not to reject H0 is referred to as the “critical value approach.” 
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 L-4.1.5  Statistical software provides an alternative to the critical value approach (for de-
termining whether H0 should be rejected), referred to as the “p value approach.” For this particu-
lar example, given that a measure x from a normal distribution with known standard deviation 
(σ) is taken, the software also initially assumes that the null hypothesis is true (i.e., sets μ = C), 
and calculates z. The calculated value is assumed to be equal to some percentile, Zp, of the stan-
dard normal distribution. Rather than reporting the statistic z and comparing it to the percentile 
Zα, the software outputs the fraction of the normal probability distribution, p, that falls below the 
calculated value of z when μ = C. This value is referred to as the “p value.” The p value is the 
probability of obtaining a measured result of x (or a result different than the null hypothesis) 
when the null hypothesis is true (μ = C). If p is sufficiently small relative to α  (i.e., p < α), the 
null hypothesis is rejected. 
 
 L-4.1.6  The third approach is referred to as the “confidence interval approach for hy-
pothesis testing.” It entails calculating a confidence interval for the population mean μ. In this 
situation, the best estimate of μ is the single measurement x. Because rejecting the null hypothe-
sis requires 
 

 ασ
ZCx

<
−  

 
and Zα = –Z1–α, it follows that the null hypothesis would be rejected if: 
 
 1UCL x Z Cα σ−= + <  . 
 
 L-4.1.7  The left side of the inequality is the one-sided (1 – α)100% upper confidence 
limit for μ for a normal distribution with known standard deviation σ. Therefore, the null hy-
pothesis is rejected if the UCL for μ is less than C. More information on confidence limits is con-
tained in Appendix N. 
 
 L-4.1.8  The strategies discussed above are generally applicable for hypothesis tests, but 
the critical value approach is predominately used in this document.  
 
 L-4.2  Type II Error and Power.  The discussion above focused on the criteria for reject-
ing the null hypothesis. The alternative hypothesis is discussed here. When the alternative hy-
pothesis is true with μ = C* < C (when the mean [μ] is equal to some value C* < C), a normal 
distribution of measurements centered about μ = C* will be obtained (refer to the red normal 
curve). When μ = C*, the probability x > Xα equals β (refer to the red shaded region). Because 
the null hypothesis is retained when x > Xα, β is equal to the probability of retaining the null hy-
pothesis (H0: μ ≥ C) when the null hypothesis is false (i.e., when μ = C* < C). The value of β de-
termined from project data quality objectives represents the maximum tolerance for Type II 
error; that is, the maximum tolerable probability for erroneously retaining the null hypotheses. In 
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terms of an environmental investigation, the Type II error can be roughly described as the prob-
ability of concluding that a clean site is dirty. The power of the hypothesis test is defined as 1 – β 
and is equal to the probability of accepting the alternative hypothesis (μ = C* < C) when the al-
ternative hypothesis is true (the probability of concluding that a clean site is clean). 
 
 L-4.2.1  Note that, to calculate the Type II error or the power of a test, the Type I error 
must first be specified. Also, note that, in this example, the Type II error tolerance and power is 
for some pre-specified value C* < C. Paragraph L-5.2 illustrates how to calculate the power once 
α and C* are specified for a normally distributed variable X with a known population standard 
deviation.  
 
 L-4.2.2  When the mean (μ) is equal to some value greater than C (when it falls some-
where to the right of C), the probability that the null hypothesis will be rejected is acceptably 
small, less than α. The probability that the null hypothesis will be retained will be greater than 1 
– α. In terms of an environmental study, when μ > C, the probability that a dirty site will be 
identified as dirty will be acceptably high. Similarly, when the mean (μ) is equal to some value 
less than C*, the probability of retaining the null hypothesis (H0: μ ≥ C) will be less than β. The 
probability of correctly rejecting the null hypothesis (and accepting HA: μ < C) will be greater 
than 1 – β. When μ < C*, the probability that a clean site will be identified as clean will be ac-
ceptably high. However, when μ lies between C and C*, the probability of making a correct de-
cision will be low (the Type II error will be higher than β). This range of values, C – C*, is 
called the “gray region” or the “minimum detectable difference.” Because reliable decisions can-
not be made for differences smaller than C – C*, the difference C – C* may be viewed as the 
“resolution” of the statistical design. 
 
 L-4.2.3  Statistical tests cannot control both types of error simultaneously. Generally, a 
hypothesis test is set up in a manner that committing false rejection (Type I) is considered the 
more serious error and is controlled by the test, and committing false acceptance (Type II) is 
considered not as serious an error and is not controlled by the test. The data user specifies the 
probability limit, α, by the data user’s tolerance for committing false rejection (Type I). Deter-
mining how large a risk the project team is willing to tolerate for Type I errors must be done be-
fore the fact, especially when the consequences of making such an error are very serious (Milton 
and Arnold, 1990). If the null hypothesis is not rejected after the test is performed, then the Type 
II error or the power (one minus the Type II error) is calculated. If the Type II error is not suffi-
ciently small (or equivalently, the power is not sufficiently large), additional sampling would be 
considered. In general, increasing the sample size simultaneously reduces both Type I and Type 
II errors.  
 
 L-4.2.4  If the sample mean, x , for a set of n measurements, rather than a single meas-
urement, were compared to the threshold, C, to determine whether or not to reject the null hy-
pothesis (H0: μ ≥ C), then the minimum detectable difference would be given by: 
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 ( )( )βασ −− +=− 11/* ZZnCC  . 
 
 L-4.2.5  The number of random samples that must be collected can be solved from the 
above equation: 
 

 
( )

( )2

22
11

*CC

ZZ
n

−

+
= −− σβα  . 

 
 L-4.2.6  Hence, the number of samples is dependent upon α, β, σ, and C – C*. The num-
ber of samples increases as the tolerance of Type I and Type II error, α and β, decreases (as Z1–α 
and Z1–β increase as α and β decrease). The number of samples also increases as the variance 
(σ2) increases and C – C* decreases. This is reasonable because the variance is a measure of the 
variability of the underlying environmental population and C – C* is a measure of the resolution 
of the statistical design. The number of samples increases as variability or heterogeneity of the 
underlying populations increases. As the probability of making a correct decision when the true 
mean lies in the gray area is low, the quantity C – C* essentially represents the smallest differ-
ence between the mean contaminant concentration and the threshold level that can be tolerated or 
that is deemed to be important for the overall statistical design. The sample size increases when 
smaller differences become significant for the statistical design. 
 
L-5 Statistical Power Associated with Hypothesis Tests.  As previously stated, the power 
of a statistical hypothesis test is defined as the likelihood that the null hypothesis is correctly re-
jected at a fixed level of significance, α, when the alternative hypothesis is truly correct. Power 
is related to Type II errors, or false rejection. The power of a statistical test is 1 – β where β is 
the probability of a false acceptance or Type II error. Therefore, as the power of a statistical test 
increases, the probability of a false acceptance decreases.  
 
 L-5.1  Introduction.  To calculate the power of a statistical test, first determine the event 
that the test rejects the null hypothesis, H0, in a form that does not contain any unknown parame-
ters. There must be a predetermined level of significance, α, so there is a set criterion for reject-
ing the null hypothesis. The power is the calculated probability for rejecting the null hypothesis 
when the alternative hypothesis is assumed to be true. Unfortunately, the specific algorithm for 
calculating power is highly dependent upon the nature of the statistical test and power calcula-
tions are often complex. Paragraph L-5.2 presents directions for calculating the power for a hy-
pothesis test of the form: 
 
 CHCH A >≤ μμ :,:0  . 
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(Refer to Figure L-1.) The variable of interest is assumed to be normally distributed and the 
population standard deviation is known. The assumption that the population standard deviation 
(σ) is known severely limits the utility of the approach. However, it constitutes, perhaps, the 
simplest method to estimate power. In practice, an estimate of σ could be used to estimate the 
power if the uncertainty associated with the estimate was sufficiently small.  
 
 L-5.2  Example for Calculating the Power of a One-Tailed Test (from Mason et al., 
1989).  This procedure is strictly applicable only when the variable X is normally distributed with 
a known standard deviation. The procedure could potentially be used (to estimate the power) 
when the (population) standard deviation is not known and the sample is mean is calculated from 
a large number of samples (e.g., n > 100). 
 
 L-5.2.1  Suppose 
 
 10:,10:0 >≤ μμ AHH  . 
 
Assume a known standard deviation of σ = 2 for a normally distributed population. Let the Type 
I error tolerance for rejecting the null hypothesis 05.0=α  and the sample size 25=n . Note that 
the threshold value C = 10. Let C* = 11 in this example. Thus the “resolution” for the test, C* – 
C = 1. Under the null hypothesis, the largest mean μ0 = 10. It follows that the power of the test is 
as follows: 
 

( ) 0
1

10 11 11 101 10| 11 1.645 1.645
/ 2/ 25 2/ 25 2/ 25

( 0.855) 1 ( 0.855) 0.804 .

x x xP x P Z P P
n
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− − − −⎧ ⎫ ⎧ ⎫ ⎧ ⎫− = > = = > = > = > −⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭ ⎩ ⎭

= > − = − ≤ − =

 

 

α−1Z  is the (1 – α)100th percentile of the standard normal distribution, which is provided in Table 
B-15 of Appendix B. 
 
 L-5.2.2 More generally, when comparing the sample mean (of a normally distributed 
variable with standard deviation σ) to some decision limit μ0 using the null hypothe-
sis, CH =≤ 00 : μμ , the power at *1 C== μμ  is as follows: 
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 L-5.2.3 For this particular example, the experiment has a probability of 0.804 of correctly 
rejecting the null hypothesis when the true population mean is 11=μ . If this power is not ac-



EM 1110-1-4014 
15 Jan 07 

 

L-13 

ceptably large, the sample size must be increased to maintain the same significance level. For 
example, a sample size 50=n would produce the following power:  
 

 
1 0

1
11 101 1 1 1.645
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L-6 Tests for the Mean. 
 
 L-6.1  One-Sample t-test (Simple Random, Systematic Random, or Composite Sampling).  
Given a random sample of size n (or a composite sample of size n, each composite consisting of 
k aliquots), the one-sample t-test is parametric test that can be used to test hypotheses involving 
the mean (µ) of the population from which the sample was selected. The t-test is used when the 
population standard deviation is unknown but normality can be assumed.  
 
 L-6.1.1  Introduction.   
 
 L-6.1.1.1  The primary assumptions required for validity of the one-sample t-test are that 
the sample is random (data values are independent) and that the sample mean ( x ) has an ap-
proximately normal distribution. Note that, according to the Central Limit Theorem, the sample 
mean will be approximately normally distributed for a large n. Unfortunately, the value of n that 
is sufficiently large enough to normalize the sample mean is seldom known. For environmental 
data, normality is not typically assumed for the sample mean unless n is very large (e.g., n > 
100). Small sample sizes are common for environmental studies. As the sample mean is normal 
if X is normal, in practice, a data set consisting of n values of X is tested for normality and the t-
test is used if the assumption of normality is not rejected. 
 
 L-6.1.1.2  Because the sample mean and standard deviation are very sensitive to outliers, 
the t-test should be preceded by a test for outliers (Appendix E). The t-test is also adversely af-
fected by censored results. Directions for a one-sample t-test are presented in Paragraph L-6.1.2, 
followed by an example in Paragraph L-6.1.3. 
 
 L-6.1.2  Directions for a One-Sample t-test.  The steps for a one-sample t-test are pre-
sented for Case 1: CH ≤μ:0 , CH A >μ: ; and Case 2: CH ≥μ:0 , CH A <μ: .  The steps for 
Case 2 are given in braces {}. Let nxxx ,,, 21 K  represent the n data points from a normal distri-
bution. These could be either n individual samples or n composite samples consisting of k ali-
quots each.  
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 L-6.1.2.1  Verify that the data come from a normal distribution using tests presented in 
Appendices F and J, such as the Shapiro-Wilk test (Paragraph F-3.2) and a normal probability 
plot (Paragraph J-5.5). 
 
 L-6.1.2.2 Calculate the sample mean, x , and the standard deviation, s (Appendix D). 
 
 L-6.1.2.3  Use Table B-23 of Appendix B to find the critical value, να ,1−t , such that 100(1 
– α)% of the t distribution with 1−= nν  degrees of freedom is below this value. For example, if 
α = 0.05 and n = 16, then n – 1 = 15 and 15,95.0t  = 1.753. 
 
 L-6.1.2.4. Calculate the test statistic t for the data set: 
 

ns
Cxt −

= . 

 
 L-6.1.2.5  Compare the calculated test statistic t with the critical value να ,1−t  (from Table 
B-23): 
 
 L-6.1.2.5.1  If t > να ,1−t  {t < να ,1−− t }, 0H  may be rejected. Go to L-6.1.2.7. 
 
 L-6.1.2.5.2  If t ≤  να ,1−t  {t ≥  να ,1−− t }, there is not enough evidence to reject 0H  and the 
false acceptance error rate should be verified. Go to L-6.1.2.6. 
 
 L-6.1.2.6  If H0 is not rejected, calculate either the power of the test or the sample size 
necessary to achieve the false rejection and false acceptance error rates. The power of the test 
can be estimated using Paragraph L-5.2, assuming the true values for the mean and standard de-
viation are those obtained in the sample. A power curve of the test can be generated using soft-
ware packages such as the Decision Error Feasibility Trial (DEFT) software (EPA QA/G-4D). 
 
 L-6.1.2.6.1  If only one false acceptance error rate (β) has been specified (at μ1), it is pos-
sible to approximately calculate the sample size that achieves the DQOs, assuming the true mean 
and standard deviation are equal to the values estimated from the sample, instead of calculating 
the power of the test. A derivation of the following formula is provided in Appendix A of EPA 
QA/G-4D. 
 
 L-6.1.2.6.2  Calculate: 
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where Zp is the p100th percentile of the standard normal distribution (Table B-15, Appendix B).  
 
 L-6.1.2.6.3  Round m up to the next integer. If nm ≤ , the false acceptance error rate has 
been satisfied. If nm > , the false acceptance error rate has not been satisfied.  
 
 L-6.1.2.7  Summary of results for one-sample t-test: 
 
 L-6.1.2.7.1  0H  is rejected. One concludes CH A >μ: { CH A <μ: }. 
 
 L-6.1.2.7.2  0H  is not rejected and the false acceptance error rate is satisfied. One con-
cludes CH A ≤μ:  { CH A ≥μ: }; or 
 
 L-6.1.2.7.3  0H  is not rejected but the false acceptance error rate is not satisfied. The null 
hypothesis must be retained but the conclusions are uncertain since the sample size is too small. 
 
 L-6.1.2.8  Report the results of the test, sample size, sample mean, standard deviation, 
and t and να ,1−t . Note that the calculations for the t-test are the same for both simple random or 
composite random sampling. The use of compositing usually results in a smaller value of s than 
simple random sampling. 
 
 L-6.1.3  Example of One-Sample t-Test for Simple and Systematic Random Samples with 
or without Compositing.  Suppose total chromium in subsurface soil (below 5 feet from ground 
surface) at Site A is to be compared to a regulatory threshold of C = 2.0 mg/kg using the follow-
ing test with 95% level of confidence: 
 
 2:0 ≥μH ,  2: <μAH  . 
 
 L-6.1.3.1  Table L-4 presents the data. All chromium concentrations were detected, so no 
proxy concentrations are needed to evaluate the data. 
 
 L-6.1.3.2  Verify that the data follow a normal distribution. The Shapiro-Wilk test for 
normality shows evidence that the data follow a normal distribution because the test’s p value 
was 0.8489 and is > 0.05. 
 
 L-6.1.3.3  Calculate the mean and standard deviation: 619.4=x  and 8980.0=s . 
 
 L-6.1.3.4  Because we want a 95% level of confidence, 05.0=α . Also, because 36=n , 

351361 =−=−= nν . 
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 L-6.1.3.5  Using Table B-23 of Appendix B and linear interpolation, the critical value is 
1.6905. 
 
 6905.12/)684.1697.1(35,95.0,1 =+==− tt να . 
 
 L-6.1.3.6  The test statistic is 
 

 50.17
36/8980.0
0.2619.4

/
=

−
=

−
=

ns
Cxt . 

 
 L-6.1.3.7  Comparing the calculated test statistic, t, with the critical value, να ,1−t , we see 
that dftt ,1 α−−≥ (17.5 ≥ –1.6905) and so we cannot reject 0H and we must check that the false ac-
ceptance rate has been achieved. 
 
Table L-4 
Example L-6.1.3 Data 

Site A 
sample lo-

cation 

Top 
depth of 
sample 

Bottom 
depth of 
sample 

Chromium 
(total) concen-

tration 
(mg/kg)  

Site A 
sample lo-

cation 
Top depth 
of sample

Bottom 
depth of 
sample 

Chromium (to-
tal) concentra-
tion (mg/kg) 

EPC-SB01  9 10 2.95  EPC-SB07 9 10 5.1 
EPC-SB01  14 15 5.17  EPC-SB07 14 15 4.94 
EPC-SB01  19 20 4.8  EPC-SB07 19 20 4.76 
EPC-SB02  9 10 4.53  EPC-SB08 9 10 4.62 
EPC-SB02  14 15 4.01  EPC-SB08 14 15 4.72 
EPC-SB02  19 20 5.91  EPC-SB08 19 20 4.73 
EPC-SB03  9 10 3.96  EPC-SB09 9 10 3.21 
EPC-SB03  14 15 4.81  EPC-SB09 14 15 4.14 
EPC-SB03  19 20 5.27  EPC-SB09 19 20 4.85 
EPC-SB04  9 10 5.99  EPC-SB10 9 10 4.25 
EPC-SB04  14 15 4.6  EPC-SB10 14 15 5.09 
EPC-SB04  19 20 5.51  EPC-SB10 19 20 3.68 
EPC-SB05  9 10 4.72  EPC-SB11 9 10 5.12 
EPC-SB05  14 15 3.56  EPC-SB11 14 15 6.6 
EPC-SB05  19 20 4.22  EPC-SB11 19 20 6.19 
EPC-SB06  9 10 3.91  EPC-SB12 9 10 3.15 
EPC-SB06  14 15 5.81  EPC-SB12 14 15 4.11 
EPC-SB06  19 20 4.48  EPC-SB12 19 20 2.8 

 
 L-6.1.3.8  Suppose the false acceptance rate is .20.0=β  
 
 L-6.1.3.9  The power of this test is verified by assuming that the true values for the mean 
and standard deviation are those obtained in the sample. A power curve of the test was generated 
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using DEFT software, as shown in the figure below. The probability of accepting the null hy-
pothesis is plotted for a range of assumed true mean concentrations. For the regulatory threshold 
concentration of 2.0, a 95% (i.e., α  = 0.05) chance of accepting the null hypothesis is requested. 
A 20% (β) probability of accepting the null hypothesis when the true concentration is μ1 = 1.0 is 
also requested (80% power). A sample size of seven is suggested for this request. For the sample 
mean, this plot shows the probability of deciding that the true mean is higher than the regulatory 
threshold is nearly 100%, which means the test has strong power. 
 
 L-6.1.3.10  The sample size needed to achieve the false rejection rate of 0.20 when 

11 =μ  is:  
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Rounding up to the next integer, m = 7 (the reported value for “Sample Size” in Figure L-2). 

 
Figure L-2. Power curve for the one-sample t-test for simple random sampling. 
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 L-6.1.3.10  Because more than seven samples have been collected (in fact, 36 samples 
have been collected), the false acceptance error rate has been satisfied. Therefore, we have evi-
dence to suggest the true mean for chromium in Site A subsurface soil is greater than the regula-
tory threshold of 2.0 mg/kg on average. 
 
 L-6.2  One Sample t-Test for the Mean (Stratified Random Sampling).  Directions for a 
one-sample t-test for a stratified random sample followed by an example are presented in Para-
graphs L-6.2.1 and L-6.2.2, respectively. 
 
 L-6.2.1  Directions for a One-Sample t-Test for a Stratified Random Sample.  The steps 
for a one-sample t-test are presented for: Case 1: CH ≤μ:0 , CH A >μ: ; and Case 2: 

CH ≥μ:0 , CH A <μ: . The steps for Case 2 are given in braces {}. 
 
 L-6.2.1.1  Let h = 1, 2, 3,…L represent the L strata and hn  represent the sample size of 
stratum h. The ith sample from stratum h is presented by ihx , . 
 
 L-6.2.1.2  Verify that the data come from a normal distribution using tests presented in 
Appendices F and J, such as the Shapiro-Wilk test (Paragraph F-3.2) and a normal probability 
plot (Paragraph J-5.5). 
 
 L-6.2.1.3 Calculate the stratum weights hw  using the proportion of the volume in stra-
tum h, 
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where hv  is the surface area (or volume) of stratum h divided by the total surface area (or vol-
ume) over all strata. 
 
 L-6.2.1.4  For each stratum, calculate the sample stratum mean 
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and the sample stratum standard error 
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 L-6.2.1.5  Calculate overall mean and variance:  
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 L-6.2.1.6  Calculate the degrees of freedom 
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 L-6.2.1.7  Use Table B-23 of Appendix B to find the critical value, να ,1−t , so that (1 – 
α)100% of the t-distribution with the above degrees of freedom (rounded to the next highest in-
teger) is below να ,1−t . 
 
 L-6.2.1.8  Calculate the sample value (statistic):  
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 L-6.2.1.9  Compare the calculated test statistic, t, to the critical value να ,1−t ,. If t > να ,1−t  
{t < να ,1−− t ,} H0 may be rejected. If t ≤ να ,1−t  { ≥  να ,1−− t }, there is not enough evidence to reject 
H0 and the false acceptance error rate should be verified.  
 
 L-6.2.1.10  If H0 was not rejected, calculate either the power of the test or the sample 
size necessary to achieve the false rejection and false acceptance error rates. The results of the 
test could be: 
 
 L-6.2.1.10.1  H0 was rejected so it seems that the true mean is less than C {greater than 
C}. 
 
 L-6.2.1.10.2  H0 was not rejected and the false acceptance error rate was satisfied and it 
appears that the true mean is greater than C {less than C}; or, 
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 L-6.2.1.10.3  H0 was not rejected and the false acceptance error rate was not satisfied and 
it appears that the true mean is greater than C {less than C} but conclusions are uncertain since 
the sample size was too small. 
 

L-6.2.1.10.4  If H0 is not rejected, determine whether the power is adequate. Statistical 
software such as DEFT can be used for this purpose. DEFT uses the following approximation to 
calculate the number of samples required for each stratum to achieve a power of 1 – β  at some 
desired value μ1: 
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The value hn′ is rounded up to a whole number. The power is adequate if the calculated sample 
size is less than or equal to the actual sample size for each stratum: hh nn ≤′ for h = 1,…, L. 
 
 L-6.2.2  Example of a One-Sample t-Test for a Stratified Random Sample.  Suppose the 
total chromium in subsurface soil data used in the previous example (Paragraph L-6.2.1) came 
from a stratified sampling effort. Two strata were sampled, stratum A and stratum B, where stra-
tum B makes up one-third of the area to be investigated. The objective is to compare the chro-
mium concentration at Site A to a regulatory threshold of 2.0 mg/kg, based on a 95% level of 
confidence. 
 
 2:0 ≥μH ,  2: <μAH  . 
 
 L-6.2.2.1  Table L-5 presents the data. All chromium concentrations were detected so 
no proxy concentrations are needed to evaluate the data. 
 
 2=L        24=An        12=Bn        wA = 0.75       25.0=Bw  
 
 L-6.2.2.2  Verify that the data follow a normal distribution for each stratum. The 
Shapiro-Wilk test was performed for each stratum and results indicated that the data for each 
follow a normal distribution because the tests’ p values were greater than 0.05. 
 
 L-6.2.2.3  The mean and standard deviation of the data were calculated per stratum; 

05.0=α  because we want a 95% level of confidence: 
 
 24,027.1,674.4 === AAA nsx  
 12,5827.0,508.4 === BBB nsx  
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Table L-5 
Data for Example L-6.2.2 tum

 Site A sam-
ple location 

Top 
depth of 
sample 

Bottom 
depth of 
sample 

Chromium (to-
tal) concentra-
tion (mg/kg) 

tum
 Site A sam-

ple location

Top 
depth of 
sample 

Bottom 
depth of 
sample 

Chromium (to-
tal) concentra-
tion (mg/kg) 

A EPC-SB01  9 10 2.95 B EPC-SB07  9 10 5.1 
A EPC-SB01  14 15 5.17 B EPC-SB07  14 15 4.94 
A EPC-SB01  19 20 4.8 B EPC-SB07  19 20 4.76 
A EPC-SB02  9 10 4.53 B EPC-SB08  9 10 4.62 
A EPC-SB02  14 15 4.01 B EPC-SB08  14 15 4.72 
A EPC-SB02  19 20 5.91 B EPC-SB08  19 20 4.73 
A EPC-SB03  9 10 3.96 B EPC-SB09  9 10 3.21 
A EPC-SB03  14 15 4.81 B EPC-SB09  14 15 4.14 
A EPC-SB03  19 20 5.27 B EPC-SB09  19 20 4.85 
A EPC-SB04  9 10 5.99 B EPC-SB10  9 10 4.25 
A EPC-SB04  14 15 4.6 B EPC-SB10  14 15 5.09 
A EPC-SB04  19 20 5.51 B EPC-SB10  19 20 3.68 
A EPC-SB05  9 10 4.72 A EPC-SB11  9 10 5.12 
A EPC-SB05  14 15 3.56 A EPC-SB11  14 15 6.6 
A EPC-SB05  19 20 4.22 A EPC-SB11  19 20 6.19 
A EPC-SB06  9 10 3.91 A EPC-SB12  9 10 3.15 
A EPC-SB06  14 15 5.81 A EPC-SB12  14 15 4.11 
A EPC-SB06  19 20 4.48 A EPC-SB12  19 20 2.8 

 
 L-6.2.2.4  The overall mean and variance are: 
 
 633.4)508.425.0()674.475.0( =×+×=x  
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 L-6.2.2.4  The degrees of freedom are (rounded to the next highest integer): 
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 L-6.2.2.5  Table B-23 of Appendix B gives the critical value να ,1−t = 1.703.  
 
 L-6.2.2.6  The test statistic is 
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 L-6.2.2.7  Compare the calculated test statistic t with the critical value να ,1−t . Because t 

να ,1−−≥ t (16.18 ≤/ –1.703), we cannot reject 0H and must check that the false acceptance rate has 
been achieved. 
 
 L-6.2.2.8  As in Paragraph L-6.1.3.9, a 20% (β) probability of accepting the null hy-
pothesis when the true concentration is 1.0 is also requested (80% power). A power curve of the 
test was generated using DEFT software in Figure L-3 (by entering the sample standard devia-
tion si and the weight wi for each stratum). The required sample size for stratum A is equal to 5 
and that for stratum B is equal to 2 (a total sample size of 7). The required power is achieved as 
actual the sample sizes for strata A and B are 24 and 12, respectively (a total of 36 samples). 
 
 L-6.3  The Chen Test.  Environmental data such as concentration measurements are often 
confined to positive values and appear to follow a distribution with most of the data values rela-
tively small or near zero, but with a few relatively large values. Underlying such data is a distri-
bution that is not symmetrical (like a normal distribution) but is skewed to the right (like a 
lognormal distribution). Given a random sample of size n from a right-skewed distribution, the 
Chen test can be used to compare the mean (µ) of the distribution with a threshold level or regu-
latory value. This test assumes that the data arise from a right-skewed distribution and a random 
sample has been employed. Chen’s test is a generalization of the t-test, with slightly more com-
plicated calculations involving the sample mean, standard deviation, and skewness. Directions 
for conducting the Chen test are presented in Paragraph L-6.3.1, followed by an example in 
Paragraph L-6.3.2. 
 
 L-6.3.1  Directions for Conducting the Chen Test.  Let nxxx ,,, 21 K  represent the n data 
points. Let C denote the threshold level of interest. The null hypothesis is CH ≤μ:0  and the al-
ternative is CH A >μ: ; the level of significance is α. 
 
 L-6.3.1.1  If, at most, 15% of the data points are below the detection limit and C is much 
larger than the DL, then replace values (< DL) with a proxy value (Appendix C). 
 
 L-6.3.1.2  Visually check the assumption of right-skewness by inspecting a histogram or 
frequency plot for the data.  
 
 L-6.3.1.3  Calculate the sample mean, x , and the standard deviation, s (Appendix D). 
 
 L-6.3.1.4  Calculate the sample skewness  
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Figure L-3. Power curve for the one-sample t-test for stratified sampling. 
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and then compute:  
 
 )2(4)21( 323 ttatatz ++++= . 
 
The skewness, b, should be greater than 1 to confirm that the data are skewed to the right. 
 
 L-6.3.1.5  Use Table B-15 in Appendix B to find the critical value, α−1Z , such that 

%100)1( α−  of the standard normal distribution is below α−1Z , which is also the thp100  percen-
tile of the standard normal distribution. For example, if 05.0=α  then 645.11 =−αZ . 
 
 L-6.3.1.6  Compare z with α−1Z : 
 
 L-6.3.1.6.1  If α−> 1Zz , 0H  may be rejected and it appears that the true mean is greater 
than C.  
 
 L-6.3.1.6.2  If α−≤ 1Zz , there is not enough evidence to reject 0H  so it appears that the 
true mean is less than C.  
 
 L-6.3.2  Example of the Chen Test.  Suppose surface soil samples (from 0 to 5 feet below 
ground surface) have been collected at Site B to evaluate arsenic concentrations on site against a 
regulatory threshold value of 5 mg/kg using a 90% level of confidence ( 10.0=α ) and the fol-
lowing hypothesis test: 
 
 5:0 ≤μH ,  5: >μAH  
 
Table L-6 presents the analytical results from samples collected at the site. All arsenic concen-
trations were detected so no proxy concentrations are needed to evaluate the data. 
 
 L-6.4  The Wilcoxon Signed Rank (One-Sample) Test.  Given a random sample of size n 
(or composite sample size n, each composite consisting of k aliquots), the Wilcoxon signed rank 
test is a nonparametric test can be used to test hypotheses regarding the mean or median of the 
population from which the sample was selected. The mean is used as the parameter of interest in 
this Appendix, although the median could be used equivalently. The Wilcoxon signed rank test 
assumes that the data constitute a random sample from a symmetrical, continuous population. 
(Symmetrical means the underlying population frequency curve is symmetrical about its mean or 
median.) If the data are not symmetrical, it may be possible to transform them (using a transfor-
mation such as a log or square root transformation) so that this assumption is satisfied. 
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Table L-6 
Analytical Results From Samples Collected at the Site in Example L-6.3.2 

Site B sample location 
Top depth of 

sample 
Bottom depth 

of sample 

Arsenic Concentra-
tion (mg/kg), ix  3( )ix x−  

EPC-BG01 1 2 4.84 –0.0024604 
EPC-BG01 4 5 4.15 –0.5615156 
EPC-BG02 1 2 4.53 –0.0881211 
EPC-BG02 4 5 4.72 –0.0165814 
EPC-BG03 1 2 4.76 –0.0099384 
EPC-BG03 4 5 4.93 –9.112×10–5 
EPC-BG04 1 2 4.34 –0.2560479 
EPC-BG04 4 5 4.51 –0.1005446 
EPC-BG05 1 2 5.01 4.288×10–5 
EPC-BG05 4 5 3.83 –1.5011236 
EPC-BG06 1 2 4.8 –0.0053594 
EPC-BG06 4 5 4.07 –0.7412176 
EPC-BG07 0.5 1 7.43 14.796346 
EPC-BG07 2 2.5 4.6 –0.0527344 
EPC-BG08 1 2 8.12 31.107274 
EPC-BG08 4 5 4.96 –3.375×10–6 

 
 L-6.4.1  Introduction.  The Wilcoxon signed rank test is more robust to outliers. The t-
test is not robust to outliers because the sample mean and standard deviation are strongly influ-
enced by outliers. Although it is less powerful than the t-test when the data are normally distrib-
uted, it is usually more powerful when the data are not normally distributed. The Wilcoxon 
signed rank test is more likely than the t-test to identify differences for positively skewed distri-
butions. In addition, compared to tests based on ranks, the t-test has difficulty accommodating 
censored values (values below the detection limit). 
 
 L-6.4.1.1  Directions for the Wilcoxon signed rank test for a simple random sample and a 
systematical simple random sample are given below in Paragraph L-6.4.2; Paragraph L-6.4.3 is 
an example for sample sizes smaller than 20.  
 
 L-6.4.1.2  For sample sizes greater than 20, the large sample approximation to the Wil-
coxon signed rank test should be used. Directions for this test are given in Paragraph L-6.4.4 fol-
lowed by an example in Paragraph L-6.4.5. 
 
 L-6.4.1.3  Paragraph L-6.4.6 presents sample size calculations for the Wilcoxon signed 
rank test to achieve a certain power when the sample size is large. An example follows in Para-
graph L-6.4.7. 
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 L-6.4.2  Directions for the Wilcoxon Signed Rank Test for a Simple Random Sample and 
a Systematic Simple Random Sample.  The following describes the steps for applying the Wil-
coxon signed rank test for a sample size (n) less than 20 for: Case 1 ( CH ≤μ:0 , CH A >μ: ); 
and Case 2 ( CH ≥μ:0 , CH A <μ: ). Modifications for Case 2 are given in braces {}.  
 
 L-6.4.2.1  Let nxxx ,,, 21 K  represent the n observations. 
 
 L-6.4.2.2  If possible, assign values to any measurements below the detection limit with 
procedures described in Appendix H.  
 
 L-6.4.2.3  Subtract C from each observation ix  to obtain the difference Cxd ii −= . If 
any of the differences are zero, delete them and correspondingly reduce the sample size (n).  
 

 L-6.4.2.4  Assign ranks from 1 to n based on ordering the absolute differences id  (i.e., 
the magnitude of differences ignoring the sign) from smallest to largest. The rank 1 is assigned to 
the smallest value, the rank 2 to the second smallest value, and so forth. If there are ties, assign 
the average of the ranks that otherwise would have been assigned to the tied observations (e.g., if 
two equal values occur after rank 5, then assign them each a rank of 6.5 = (6 + 7)/2). 
 
 L-6.4.2.5  Assign the sign for each observation to create the signed rank. The sign is posi-
tive if the deviation id  is positive; the sign is negative if the deviation id  is negative. 
 
 L-6.4.2.6  Calculate R, the sum of the ranks with a positive sign. 
 
 L-6.4.2.7  Use Table B-24 of Appendix B to find the critical value nw ,α . 
 
 L-6.4.2.8  Compare the calculated test statistic, R, to the critical value.  
 
 L-6.4.2.8.1  If ( ) nwnnR ,2/1 α−+>  { }nwR ,α< , 0H may be rejected.  
 
 L-6.4.2.8.2  If ( ) nwnnR ,2/1 α−+≤  { }nwR ,α≥ , there is not enough evidence to re-
ject 0H . 
 
 L-6.4.2.9  The results of the test may be:  
 
 L-6.4.2.9.1  0H is rejected; C>μ  { C<μ }. 
 
 L-6.4.2.9.2  0H is not rejected C≤μ { C≥μ }. 



EM 1110-1-4014 
15 Jan 07 

 

L-27 

 
 L-6.4.3  Example of the Wilcoxon Signed Rank Test for Simple and Systematical Random 
Samples.  Suppose 14=n  surface soil samples (from 0 to 5 feet below ground surface) were col-
lected at Site B to evaluate cadmium concentrations on site against a regulatory threshold value 
of 0.75 using a 95% level of confidence ( 05.0=α ) and the following hypothesis test. 
 
 75.0:0 ≥μH ,  75.0: <μAH  . 
 
 L-6.4.3.1  Table L-7 presents the analytical results from samples collected at the site. 
Three of the cadmium concentrations were non-detects, so proxy concentrations are defined as 
the detection limit and are presented in parentheses. 
 
Table L-7  
Analytical Results from Samples Collected at the Site in Example L-6.4.3 

Site B sam-
ple location 

Top depth 
of sample 

Bottom 
depth of 
sample 

Flag (ND = 
not detected)

Cadmium Con-
centration 
(mg/kg), ix  i id x C= −  

Rank asso-
ciated with 

id  Sign of id
EPC-BB01 1 2  1.6 0.85 13.5 + 
EPC-BB01 4 5  1.6 0.85 13.5 + 
EPC-BB02 1 2  1.55 0.8 12 + 
EPC-BB02 4 5 ND (0.242) –0.508 9 – 
EPC-BB03 1 2  0.624 –0.126 1 – 
EPC-BB03 4 5  0.276 –0.474 7 – 
EPC-BB04 1 2  1.5 0.75 11 + 
EPC-BB04 4 5  0.301 –0.449 6 – 
EPC-BB05 1 2  0.588 –0.162 3 – 
EPC-BB05 4 5  0.264 –0.486 8 – 
EPC-BB06 0.5 1  0.899 0.149 2 + 
EPC-BB06 2 2.5  0.332 –0.418 4 – 
EPC-BB07 1 2  1.42 0.67 10 + 
EPC-BB07 4 5  0.326 –0.424 5 – 

 
 L-6.4.3.2  Steps 1, 2, and 3 are contained in the three right-hand columns, in order. 
 
 L-6.4.3.3  Step 4: From the six cases where the sign of id  is positive,  
 
 6220211125.135.13 =+++++=R  . 
 
 L-6.4.3.4  Step 5: Table B-24 of Appendix B gives a critical value of 2614,05.0 =w . 
 
 L-6.4.3.5  Step 6: Compare the calculated test statistic and the critical value, 2662 ≥ , 
so 0H  was not rejected.  
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 L-6.4.3.6  Prior to performing the test, a histogram was created to check the symmetry of 
the data, which appear symmetrical, as shown below. 
 
 L-6.4.4  Directions for the Large Sample Approximation to the Wilcoxon Signed Rank 
Test.  The following describes the steps for applying the large sample approximation of the Wil-
coxon signed rank test for: Case 1 ( CH ≤μ:0 , CH A >μ: ); and Case 2 
( CH ≥μ:0 , CH A <μ: ). Modifications for Case 2 are given in braces {}.  
 
 L-6.4.4.1  Let nxxx ,,, 21 K  represent the n data points where n is greater than or equal to 
20. If possible, assign values to any measurements below the detection limit with procedures de-
scribed in Appendix H. 
 
 L-6.4.4.2  Subtract C from each observation, ix , to obtain the differences Cxd ii −= . If 
any of the differences are zero delete them and correspondingly reduce the sample size (n). 
 
 L-6.4.4.3  Assign ranks from 1 to n based on ordering the absolute deviations id  (i.e., 
magnitude of differences ignoring the sign) from smallest to largest. Rank 1 is assigned to the 
smallest value, rank 2 to the second smallest value, and so forth. If there are ties, assign the aver-
age of the ranks that would otherwise have been assigned to the tied observations. 
 
 L-6.4.4.4  Assign the sign for each observation to create the signed rank. The sign is posi-
tive if the deviation, id , is positive; the sign is negative if the deviation, id , is negative. 
 
 L-6.4.4.5  Calculate the test statistic R, the sum of the ranks with a positive sign. 
 
 L-6.4.4.6  Calculate the critical value  
 
 ( ) ( )( ) 2412141 ++++= nnnZnnw pp   
 
where }{1 αα =−= pp and pZ is the thp100  percentile of the standard normal distribution (Ta-
ble B-15 of Appendix B). 
 
 L-6.4.4.7  Compare the test statistic to the critical value. If { }pp wRwR <> , 0H  may be 
rejected. Otherwise, there is not enough evidence to reject 0H .  
 
 L-6.4.4.8  The results of the test may be: 
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 L-6.4.4.8.1  0H  is rejected; C>μ { C<μ }. 
 
 L-6.4.4.8.2  0H  is not rejected; C≤μ { C≥μ }. 
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Figure L-2.  Histogram Plot of Wilcoxon Signed Rank Test for random samples. 
 
 L-6.4.5  Example for the Large Sample Approximation to the Wilcoxon Signed Rank Test 
for Simple and Systematic Random Samples.  Suppose additional surface soil samples (from 0 to 
5 feet below ground surface) were collected at Site B to further delineate contamination. Addi-
tional samples were analyzed for cadmium and so the test performed earlier (see Paragraph L-
6.4.3) for cadmium must be redone. The test was set up to compare cadmium concentrations on 
site to a regulatory threshold value of 0.75 using a 95% level of confidence ( 05.0=α ) and the 
following hypothesis test. 
 
 75.0:0 ≥μH ,  75.0: <μAH  . 
 
 L-6.4.5.1  Table L-8 presents all analytical results from samples collected from both 
sampling events. Non-detected cadmium concentrations were present in the data set; therefore, 
proxy concentrations are defined as the detection limit and are presented in parentheses. 
 
 L-6.4.5.2  Steps 1, 2, and 3 are contained in the three right-hand columns, in order. 
 
 L-6.4.5.3  Step 4: The test statistic, which is the sum of the ranks associated with the 
positive signs, is equal to  
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Table L-8  
All Analytical Results from Samples Collected from Both Sampling Events 

Site B sample 
location 

Top depth 
of sample 

Bottom 
depth of 
sample 

Flag ND = not 
detected 

Cadmium concen-
tration (mg/kg), xi i id x C= −  

Rank associ-
ated with id

Sign of 
id  

EPC-BB01 1 2  1.6 0.85 21.5 + 
EPC-BB01 4 5  1.6 0.85 21.5 + 
EPC-BB02 1 2  1.55 0.8 20 + 
EPC-BB02 4 5 ND (0.242) –0.508 14 – 
EPC-BB03 1 2  0.624 –0.126 2 – 
EPC-BB03 4 5  0.276 –0.474 12 – 
EPC-BB04 1 2  1.5 0.75 19 + 
EPC-BB04 4 5  0.301 –0.449 10 – 
EPC-BB05 1 2  0.588 –0.162 4 – 
EPC-BB05 4 5  0.264 –0.486 13 – 
EPC-BB06 0.5 1  0.899 0.149 3 + 
EPC-BB06 2 2.5  0.332 –0.418 5 – 
EPC-BB07 1 2  1.42 0.67 17 + 
EPC-BB07 4 5  0.326 –0.424 8 – 
EPC-BG08 1 2  1.48 0.73 18 + 
EPC-BG08 4 5  0.302 –0.448 9 – 
EPC-BG09 1 2  1.39 0.64 15 + 
EPC-BG09 4 5  0.33 –0.42 6 – 
EPC-BG10 0.5 1  0.812 0.062 1 + 
EPC-BG10 2 2.5  0.287 –0.463 11 – 
EPC-BG11 1 2  1.41 0.66 16 + 
EPC-BG11 4 5  0.327 –0.423 7 – 

 
 
 152161151817319205.215.21 =+++++++++=R  . 
 
 L-6.4.5.4  Step 5: The critical value is 
 
 ( ) ( )( ) 83.7524122212222645.1412222 =+×+−+=pw  
 
where 22=n and by linear interpolation .645.12/)65.164.1(05.0 −=−−=Z  
 
 L-6.4.5.5  Step 6: Comparing the test statistic to the critical value, ( )pwR >> ,83.75152 , 
so 0H  is not rejected.  
 
 L-6.4.5.6  Therefore, there is no evidence to suggest that the true mean for cadmium in 
Site B surface soil is less than the regulatory threshold of 0.75 mg/kg. 
 
 L-6.4.5.7  A histogram was created to check the symmetry of the data. The data appear 
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symmetrical, as indicated in Figure L-3. 
 
 L-6.4.6  Directions for Calculating Sample Size for the Wilcoxon Signed Rank Test to 
Achieve a Specified Power.  Noether (1987) discusses determining an adequate sample size 
based on a defined level of power to apply the Wilcoxon signed rank test for the following hy-
pothesis test: Case 1 ( CH ≤μ:0 , CH A >μ: ); and Case 2 ( CH ≥μ:0 , CH A <μ: ).  Modifi-
cations for Case 2 are given in braces {}.  
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Figure L-3. Histogram plot of Wilcoxon Signed Rank Test for large random samples. 
 
 L-6.4.6.1  If the null hypothesis is not rejected, and the number of samples n′ required to 
achieve some desired power 1 – β could be calculated, the power would be adequate if nn ′≥ . If 
n ≥ 20 samples are collected, a conservative estimate of the sample size required for a power of 1 
– β is:  
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( )2

2
11

5.03 −′

+
=′ −−

p

ZZ
n βα  

 
where qZ  is the q quantile of the standard normal distribution (from Table B-15), α  is the sig-
nificance level of the test, 1 – β is the desired power for the test, and p′  is the true probability 
that the average of any two independent observations 
 

 
2

ji xx +
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where i ≠ j, exceeds {is less than} C. 
 
 L-6.4.6.2  The equation for n′  assumes that n is large enough for the test statistic R to be 
normally distributed (which is generally valid if the sample size exceeds 20). If the suggested 
sample size does not exceed 20, consult a statistician. 
 
 L-6.4.6.3  The value of p′  can be determined from past information, a pilot sample, or 
chosen to represent a meaningful shift in the data (Noether, 1987). On the basis of what is con-
sidered to be a meaningful shift, one would assign p′  equal to some probability greater than 0.5.  
 
 L-6.4.7  Example of Calculating Sample Size for the Wilcoxon Signed Rank Test to 
Achieve a Specified Power.  Let us calculate the power for the hypothesis test performed in Para-
graph L-6.4.5. In this example, n = 22 samples were collected to evaluate cadmium concentra-
tions against a regulatory threshold value of 0.75 mg/kg at the 95% level of confidence 
( 05.0=α ) using the hypothesis test. 
 
 75.0:0 ≥μH , 75.0: <μAH  . 
 
The null hypothesis was not rejected. We wish to ensure that n is large enough to find a mean-
ingful decrease in the mean with 80% probability (power).  
 
 L-6.4.7.1  The objective is to ensure that the sample size is large enough to find a mean-
ingful decrease in the mean with 80% probability. Let us assume that seven samples had been 
collected for a prior “pilot” study. Table L-9 presents the analytical results from samples col-
lected for the pilot study in the left-most column and along the top. The independent pair wise 
averages are calculated in the body of the table. Averages that fall below the regulatory thresh-
old of 0.75 mg/kg are shaded. 

 
Table L-9  
Analytical Results from Samples Collected for the Pilot Study and Independent Pair Wise 
Averages  

Cadmium con-
centration 

(mg/kg) 
1.220 0.301 0.624 0.276 0.588 0.264 0.332 

1.220 — 0.761 0.922 0.748 0.904 0.742 0.776 
0.301 — — 0.463 0.289 0.445 0.283 0.317 
0.624 — — — 0.450 0.606 0.444 0.478 
0.276 — — — — 0.432 0.270 0.304 
0.588 — — — — — 0.426 0.460 
0.264 — — — — — — 0.298 
0.332 — — — — — — — 
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 L-6.4.7.2  Of the initial 7 results, 17 of the 21 independent averages are less than 0.75. 
The observed probability that the average of any two observed observations is less than C is 
17/21 = 0.8095. Therefore, on the basis of this estimated (pilot study) probability, assume that it 
was determined that a power of 80% is required for 809.0=′p . 
 
 L-6.4.7.3  The required sample size to meet the power requirement is: 
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 L-6.4.7.4  The required sample size is rounded up to 22. Because 'nn ≥ , the required 
power of 80% was achieved. 
 
L-7 Tests for a Median.  A population median ( μ~ ) is another measure of the center of the 
population distribution. This population parameter is less sensitive than the sample mean to ex-
treme values and non-detected results. Therefore, this parameter sometimes is used instead of the 
mean when the data contain a large number of non-detects or extreme values. 
 
 L-7.1  The Binomial Sign Test for the Median.  Given a random sample of size n of con-
tinuous or discrete samples, the sign test may be used to test hypotheses regarding a population 
median for a distribution from which the data were drawn. The only assumption required for the 
sign test is that it be a random sample. The procedures are also robust to outliers, as long as they 
do not represent data errors. Directions for the sign test are given below in Paragraph L-7.2, fol-
lowed by an example in Paragraph L-7.3. 
 
 L-7.2  Directions for the Sign Test for the Median.  The following describes the steps for 
applying the sign test for a sample size (n). 
 

Case 1 ( CH x ≤μ~:0  versus CH xA >μ~: ); and  
 

Case 2 ( CH x ≥μ~:0  versus CH xA <μ~: ).  
 
Modifications for Case 2 are given in braces {}. C is the hypothesized median or critical thresh-
old value and xμ~  is the median for the variable X. The level of significance is α . 
 

 L-7.2.1  Note that μ~  can also be defined as the median value for the variable D, where 
CXD −=  and so the hypotheses tests are written in terms of the difference.  
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Case 1 ( 0~:0 ≤DH μ  versus 0~: >DAH μ ); and  

 
Case 2 ( 0~:0 ≥DH μ  versus 0~: <DAH μ ). 

 
 L-7.2.2  The hypotheses can also be written in terms of the probability of exceeding 0. 
 
 Case 1 ( ( ) 5.00:0 ≥≤DPH  versus ( ) 5.00: <≤DPH A ); and 
 
 Case 2 ( ( ) 5.00:0 ≥≥DPH  versus ( ) 5.00: <≥DPH A ).  
 
Equivalently, 
 

Case 1 ( ( ) 5.00:0 ≤>DPH  versus ( ) 5.00: >>DPH A ); and 
 
Case 2 ( ( ) 5.00:0 ≤<DPH  versus ( ) 5.00: ><DPH A ). 

 
This formulation suggests the use of the binomial distribution with p = 0.5 to test the null hy-
pothesis. 
 

 L-7.2.3  Noether (1987) discusses determining an adequate sample size based on a de-
fined level of power to apply the sign test for the median. Under the assumption that the test sta-
tistic (in this case the number of samples that exceed {are less than} C) is normally distributed, a 
conservative sample size, n′ , is calculated as: 
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where qZ  is the q quantile of the standard normal distribution (from Table B-15), α  is the sig-
nificance level of the test, β−1  is the desired power for the test, and p  is the true probability 
that an observation exceeds {is less than} C. The value of p  can be taken from past information, 
a pilot sample, or chosen to represent a meaningful shift in the data (Noether, 1987). The normal-
ity of the test statistic under the null hypothesis rests on the normal approximation to the bino-
mial distribution. As discussed in Appendix E, this approximation works well when the sample 
size is at least 20 ( 10≥np , 5.0=p ). If the suggested sample size does not exceed 20, consult a 
statistician. 
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 L-7.2.3  Let nxxx ,,, 21 K  represent the n data points. Define a new variable CXD −= . 
 
 L-7.2.3.1  If possible, assign values to any measurements below the detection limit with 
procedures described in Appendix H. Subtract C from each observation, ix , to obtain the devia-
tions, Cxd ii −= . If any of the deviations are zero, delete them and correspondingly reduce the 
sample size (n). 
 
 L-7.2.3.2  Count the number of positive {negative} deviations ( id ) and denote this num-
ber by y. 
 
 L-7.2.3.3  The number of positive {negative} differences is described by a binomial dis-
tribution. In terms of the notation and terminology used in Appendix E, the number of data 
points is the number of “trials,” n. Under the null hypothesis, the probability, p, of a positive 
{negative} difference (a success) is 0.5. The total number of positive {negative} differences, y, 
is the successful occurrence of an event y times out of n. Therefore, bin(y; n, p = 0.5) is the 
probability of y positive {negative} differences for a set of n trials, where the probability of a 
positive {negative} difference p = 0.5 (when H0 is assumed to be true). The probability of ob-
taining less than or equal to y positive {negative} differences,  
 

 P(Y ≤ y) =∑
=

y

i
pnibin

0
),,(  

 
is the value of the “cumulative binomial distribution.” Table B-1 presents the probabilities of the 
cumulative binomial distribution for various values of n, p, and k where k = y. 
 
 L-7.2.3.4  If the probability of obtaining an equal or larger number of positive {negative} 
differences than the observed number y is small, that is, if α≤=≥ )5.0,|( pnyYP , then it is 
unlikely that the null hypothesis is true and the null hypothesis is rejected. Equivalently, 
 
 L-7.2.3.4.1  If )1()5.0,|1()5.0,|( α−≥=−≤==< pnyYPpnyYP , 0H  may be re-
jected. 
 
 L-7.2.3.4.2  Otherwise, there is not enough evidence to reject 0H . 

 
 L-7.2.4  Use Table B-1 of Appendix B to find the probability value associated with n, 

,1−y  and 5.0=p , which is the cumulative binomial distribution probability,  
 
 )5.0,|1( =−≤ pnyYP   
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to determine whether or not to reject the null hypothesis. 
 
 L-7.3  Example of the Sign Test for the Median.  Suppose arsenic concentrations at a 
site are to be compared to a regulatory threshold value of 5 mg/kg using a 90% level of confi-
dence ( 10.0=α ). The median can be compared to this threshold using the following hypothe-
sis test: 
 
 5~:0 ≤μH , 5~: >μAH  . 
 
 L-7.3.1  Suppose we wish to know the adequate sample size necessary to be 80% certain 
that we can detect a meaningful difference from the null hypothesis. The meaningful difference 
for this site is defined to be when the probability of exceeding the regulatory threshold is twice 
as likely as being below the threshold, ( ) 325~ =>μP . The required sample size is 41: 
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 L-7.3.2  Consider the data presented in Paragraph L-6.3.2 for arsenic concentrations in 
surface soil samples (from 0 to 5 feet below ground surface) at Site B. Table L-10 presents the 
analytical results from samples collected at the site. All arsenic concentrations were detected, so 
no proxy concentrations are needed to evaluate the data. 
 
 L-7.3.3  The number of positive deviations ( id ), y = 3. 
 
 L-7.3.4  Using Table B-1 in Appendix B, we find 002090.0)5.0,16|2( ===≤ pnYP . 
 
 L-7.3.5  As 0.002090 < 0.9, H0 may not be rejected. Therefore, it appears that the true 
median for arsenic is less than the regulatory threshold of 5 mg/kg. However, to achieve 80% 
power and satisfy the sample size requirement calculated earlier, an additional 25 randomly se-
lected samples would be needed to increase the total sample size to 41. 
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Table L-10 
Analytical Results From Samples Collected At The Site For Example L-7.3 

Site B sample loca-
tion 

Top depth of 
sample 

Bottom depth of 
sample 

Arsenic concentra-
tion (mg/kg) di = xi  –C Sign of di

EPC–BG01 1 2 4.84 –0.16 – 
EPC–BG01 4 5 4.15 –0.85 – 
EPC–BG02 1 2 4.53 –0.47 – 
EPC–BG02 4 5 4.72 –0.28 – 
EPC–BG03 1 2 4.76 –0.24 – 
EPC–BG03 4 5 4.93 –0.07 – 
EPC–BG04 1 2 4.34 –0.66 – 
EPC–BG04 4 5 4.51 –0.49 – 
EPC–BG05 1 2 5.01 0.01 + 
EPC–BG05 4 5 3.83 –1.17 – 
EPC–BG06 1 2 4.8 –0.2 – 
EPC–BG06 4 5 4.07 –0.93 – 
EPC–BG07 0.5 1 7.43 2.43 + 
EPC–BG07 2 2.5 4.6 –0.4 – 
EPC–BG08 1 2 8.12 3.12 + 
EPC–BG08 4 5 4.96 –0.04 – 

 
L-8 Test for a Proportion or Percentile. 
 
 L-8.1  The One-Sample Proportion Test.  Given a random sample of size n, the non-
parametric, one-sample proportion test may be used to test hypotheses regarding a population 
proportion or population percentile for a distribution from which the data were drawn. The only 
assumption required for the one-sample proportion test is that it be a random sample. To verify 
this assumption, review the procedures and documentation used to select the sampling points and 
ascertain that proper randomization has been used in sample collection. 
 
 L-8.1.1  The null and alternative hypotheses for this test can be stated as: 
 
 CXH oP ≤:0 ,  CXH oPA >:  
 
where oPX  is the 0P  quantile of the variable X; that is, 
 
 0)( PXXP oP =≤  . 
 
 L-8.1.2  If P is the “true” proportion of X that is less than or equal to C = XP, then 
 
 PCXP =≤ )(  . 
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 L-8.1.3  The hypothesis statement can be written as: 
 
 PPH ≤00 : ,  PPH A >0: . 
 
 L-8.1.4  Equivalently, 
 

00 : PPH ≥ ,  0: PPH A <  . 
 
(Note that P, the true portion of the population less than C, should note be confused with the 
probability density function P(X) for the variable X discussed in Appendix E.) 
 
 L-8.1.5  Because the only assumption is that it be a random sample, the procedures are 
valid for any underlying distributional shape. The procedures are also robust to outliers, as long 
as they do not represent data errors. This test is recommended when fewer than 50% of the re-
sults are detected. The test may be used as long as the proportion of non-detects is smaller than 
the proportion, p0, of interest, and n must be relatively large for the test to be reliable. 
 
 L-8.1.6  Directions for the one-sample proportion test for a simple random sample and a 
systematic random sample are given below in Paragraph L-8.2, followed by an example pre-
sented in Paragraph L-8.3. 
 
 L-8.2  Directions for a Simple Random Sample and a Systematic Random Sample.  Direc-
tions to apply the one-sample proportion test for Case 1 and Case 2: Case 1 
( 00 : PPH ≤ , 0: PPH A > ); and Case 2 ( 00 : PPH ≥ , 0: PPH A < ), which are given in braces { }. 
 
 L-8.2.1  Given a random sample nxxx ,,, 21 K  of measurements from the population, let P 
denote the proportion of X's that do not exceed C. This true proportion can be estimated from the 
sample data by dividing the number (k) of sample points that are less than or equal to C by the 
sample size (n). 
 
 nkpP =≈  . 
 
 L-8.2.2  Compute np, and n(1 – p). If both np and n(1 – p) are greater than or equal to 5, 
proceed.  
 
 L-8.2.3  Otherwise, consult a statistician as analysis may be complex. Calculate: 
 

 
nPP

Pp
z

/)1( 00

0

−

−
= . 
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 L-8.2.4  Use Table B-15 of Appendix B to find the critical value, α−1Z , such that 

%100)1( α−  of the normal distribution is below α−1Z . For example, if 05.0=α  then 
645.11 =−αZ . 

 
 L-8.2.4.1  If }{ 11 αα −− −<> ZzZz , 0H may be rejected. 
 
 L-8.2.4.2  If }{ 11 αα −− −≥≤ ZzZz , there is not enough evidence to reject 0H . Therefore, 
the false acceptance error rate must be verified. 
 
 L-8.2.5  To calculate the power of the test, choose a proportion, P1, that would constitute 
a meaningful difference from P0, and use a statistical software package such as the DEFT soft-
ware (EPA QA/G-4D) or the DataQUEST software (EPA QA/G-9D) to generate the power curve 
of the test. 
 
 L-8.2.6  If only one false acceptance error rate (β) has been specified (at P1), it is possible 
to calculate the sample size that achieves the DQOs. To do this, calculate: 
 

 
2

01

111001 )1()1(

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−+−
= −−

PP
PPZPPZ

m βα . 

 
 L-8.2.7  If nm ≤ , the false acceptance error rate has been satisfied. Otherwise, the false 
acceptance error rate has not been satisfied. It is usually more helpful to do this calculation be-
fore sampling, as all of the parameter values needed for the calculation are available before the 
sampling begins. 
 
 L-8.2.8  The results of the test could be: 
 
 L-8.2.8.1  0H is rejected, conclude that { }00 PPPP <> . 
 
 L-8.2.8.2  0H is not rejected, the false acceptance error rate was satisfied, and conclude 
that { }00 PPPP ≥≤ . 
 
 L-8.2.8.3  0H is not rejected, the false acceptance error rate was not satisfied, and the 
conclusion that { }00 PPPP ≥≤  is uncertain because the sample size was too small. 
 
 L-8.2.3  Example of the One-Sample Test for Proportions of Simple and Systematic Ran-
dom Samples.  Groundwater concentrations of gasoline at a site are compared to a regulatory 
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threshold C = 35 micrograms per liter (μg/L). Suppose this site has only 13 detections out of 90 
groundwater samples collected to date. Because more than 50% of the data are censored, the test 
of proportions is more appropriate than a t-test or Wilcoxon signed rank test. The test of propor-
tions can be used to determine if more than 95% of the concentrations are less than the regula-
tory threshold at the 90% level of confidence. The null and alternative hypotheses are as follows:  
 
 35: 95.00 ≥XH  μg/L, 35: 95.0 <XH A  μg/L . 
 
 L-8.2.3.1  Equivalently, 
 
 95.0:0 ≤PH ,  95.0: >PH A  . 
 
(This is Case 1 in Paragraph L-8.2.) Suppose 11 of the detected concentrations exceed this regu-
latory threshold; therefore, the proportion of samples with detected concentrations below the 
threshold is ( ) 8778.090/1190 =−=p . 
 
 L-8.2.3.2  Determine whether np ≥ 5 and n(1 – p) ≥ 5: 
 
 90 0.8778 79np = × =  
 
 (1 ) 90 (1 0.08778) 11n p− = × − =  . 
 
 L-8.2.3.3  Because np ≥ 5 and n(1 – p) ≥ 5, the test of proportions can be used. In this 
example, P0 = 0.95 and 1 – α = 0.90. 
 

 143.3
90/)95.01(95.0

95.08778.0
/)1( 00

0 −=
−

−
=

−

−
=

nPP
Pp

z . 

 
 L-8.2.3.4  Using Table B-15 of Appendix B, we find the critical value 90.0Z =1.282.  
 
 L-8.2.3.5  Compare the calculated value z with the critical value. The null hypothesis is 
rejected if .90..0Zz >  As )(282.1143.3 90.0Zz ≤≤− , there is not enough evidence to reject 0H . 
Therefore, the false acceptance error rate has to be verified through a power curve or sample size 
calculation. Suppose a false acceptance error rate was specified at 99.01 =P  ( 20.0=β ); it is 
possible to calculate the sample size that achieves this error rate using the following equation: 
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.8343.82
95.099.0

)99.01(99.08417.0)95.01(95.0282.1
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 L-8.2.3.6  Because ),(9083 nm ≤≤ the false acceptance error rate has been satisfied. 
Therefore, 0H was not rejected and the false acceptance error rate was satisfied. There is at least 
90% confidence that the proportion of gasoline concentrations below the regulatory threshold is 
less than 0.95 (i.e., 95.0≤P , or, equivalently, 3595.0 ≥X ). 
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APPENDIX M 
Hypothesis Testing—Two-Population and General Cases 

 
M-1 Introduction.  A two-sample test is used when a data user is interested in making infer-
ences about two independent populations, comparing some parameter from one population to the 
corresponding parameter from a second population. For example, a common environmental ap-
plication entails comparing the population mean or median of the study area data set to the popu-
lation mean or median of the background data set. EPA 600/R-96/084, QA/G-9 contains 
additional examples of the basic statistical tests presented here. Lehmann (1975) is a good re-
source for nonparametric tests. Montgomery (1997) contains a fuller treatment of two-sample t-
tests, matched pairs t-tests, ANOVA, and multiple comparison tests. 
 
M-2 Comparing Two Means.  Two-sample tests do not require equal sample sizes, though 
equal sample sizes are recommended. The accuracy of estimating summary statistics from each 
sample is based on the number of samples available; data sets with many samples can provide 
more accurate estimates of the mean and standard deviation than those with only a few. When 
sample sizes are not equal, it may mean that one population is not defined as well as the other. If 
sample sizes are grossly unequal, the result of the two-sample test may produce an incorrect con-
clusion. 
 
 M-2.1  Student's Two-Sample t-Test.  Student's two-sample t-test is a parametric statisti-
cal test that can be used to compare two population means based on the independent random 
samples x1, x2,..., xm from the first population, and samples y1, y2,..., yn from the second popula-
tion. This test assumes the variances of the two populations are approximately equal. This suppo-
sition can be verified using an F-test or Levene’s test (Appendix N, Paragraph N-4). However, 
the F-test is not recommended because it is not robust to deviations from normality. A positively 
skewed distribution tends to give rise to higher values of F and false rejection of the null hy-
pothesis that the variances of two distributions are equal. If the two variances are not equal, the 
Satterthwaite’s t-test is recommended (See Paragraph M-2.1.2 for directions and Paragraph M-
2.1.3 for an example). 
 
 M-2.1.1  Introduction.  The principal assumption required for the two-sample t-test is that 
a random sample of size m (x1, x2,..., xm) is drawn from population 1, and an independent random 
sample of size n (y1, y2,..., yn) is drawn from population 2. The second assumption required for 
the two-sample t-test is that the sample means, x (sample 1) and y  (sample 2), are approxi-
mately normally distributed (if X and Y are normal, the sample means x and y will be also be 
normally distributed). 
 
 M-2.1.1.1  The two-sample t-test is commonly used to compare site contaminant concen-
trations to background concentrations: 
 
 00 : δμμ ≤− BSH , 0: δμμ >− BSAH  . 
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The “true” mean site concentration and “true” mean background concentrations are denoted by 
Sμ  and Bμ , respectively. When the above null hypothesis is selected, often δ0 = 0 and α = 0.2 or 

0.1. For this situation, the value of α tends to be somewhat higher than that used for other statis-
tical applications (e.g., where α may be 0.05 or 0.01). This occurs to avoid a large Type II error 
(in this case, concluding the site is “clean” when it is “dirty” relative to background). As α de-
creases, the value of x > y  required to reject yxH μμ ≤:0  increases. The following null and al-
ternative hypotheses are also frequently used: 
 
 00 : δμμ ≥− BSH ,  0: δμμ <− BSAH  . 
 
 M-2.1.1.2  In this situation, a common value for α is 0.05. However, the value for δ0 de-
pends greatly on the project. To reject H0, that is, to demonstrate that the site is “clean” relative 
to background, the site mean must be significantly less than the background plus δ0 (e.g., x << 
y + δ0). When there is actually no difference between the site and background populations (i.e., 
μS = μB), rejecting the null hypothesis in favor of the alternative hypothesis (i.e., the site is 
“clean” relative to background), becomes less probable as the selected value of δ0 decreases. In 
general, a small value of δ0 is undesirable from a cost perspective as a larger than budgeted num-
ber of samples may be required to determine if the means differ by δ0. However, an extremely 
large value of δ0 is undesirable from an environmental risk perspective as H0 may be rejected 
even when the site mean is much larger than the background mean. Occasionally, δ0 is equal to 
one or two standard deviations of the background data set. The selection of an appropriate value 
of δ0 is a critical component of the DQO process during project planning; the value should be 
established only after input is obtained from all users and stake holders. 
 
 M-2.1.2  Directions to Apply the Two-sample t-test for Differences Between the Popula-
tion Means.  Steps to apply the two-sample t-test for differences between the population means 
for Case 1 and Case 2 are as follows: Case 1: oo yxH δμμ ≤−: , 0: δμμ ≥− yxAH ; and Case 2: 

00 : δμμ ≥− yxH , 0: δμμ ≤− yxAH , which is given in braces { }. 
 
 M-2.1.2.1  Verify that both data sets are normal, using procedures in Appendices F and J, 
such as the Shapiro-Wilk test (Paragraphs F-3.2 and F-3.3) and a normal probability plot (Para-
graphs J-5.5 and J-5.6). 
 
 M-2.1.2.2  Calculate the sample mean, x , and the sample variance, 2

Xs  (Appendix D), 
for the first data set (containing m points) and compute the sample mean, y , and the sample 
variance, 2

Ys , for the second data set (containing n points). 
 
 M-2.1.2.3  Determine if the variances of the two populations are equal. If the variances of 
the two populations are not equal, use Satterthwaite’s t-test (presented below). Otherwise, com-
pute the pooled standard deviation: 
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 M-2.1.2.4  Calculate  
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 M-2.1.2.5  Use Table B-23 of Appendix B to find the critical value, 2,1 −+− nmt α , such that 

100)1( α− % of the t-distribution with (m + n – 2) degrees of freedom is below 2,1 −+− nmt α . 
 
 M-2.1.2.5.1  If }{ 2,12,1 −+−−+− −<> nmnm tttt αα , reject 0H . Go to step M-2.1.2.7.  
 
 M-2.1.2.5.2  If }{ 2,12,1 −+−−+− −≥≤ nmnm tttt αα , there is not enough evidence to reject 0H . 
Therefore, the false acceptance error rate will need to be verified. Go to M-2.2.6.  
 
 M-2.1.2.6  To calculate the power of the test, assume that the true values for the mean 
and standard deviation are those obtained in the sample and use a statistical software package 
like DEFT (EPA QA/G-4D) or DataQUEST (EPA QA/G-9D) to generate the power curve of the 
two-sample t-test. If only one false acceptance error rate (β) has been specified (at δ1), it is possi-
ble to calculate the sample size that achieves the DQOs, assuming the true mean and standard 
deviation are equal to the values estimated from the sample, instead of calculating the power of 
the test. 
 
 M-2.1.2.7  Calculate:  
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If mm ≤*  and nn ≤* , the false acceptance error rate has been satisfied. Otherwise, the false ac-
ceptance error rate has not been satisfied. 

 
 M-2.1.2.8  The results of the test could be: 
 
 M-2.1.2.8.1  0H  is rejected; }{ 00 δμμδμμ <−>− yxyx . 
 
 M-2.1.2.8.2  0H  is not rejected and the false acceptance error rate is satisfied; 

}{ 00 δμμδμμ ≥−≤− yxyx . 
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 M-2.1.2.8.3  0H  is not rejected and the false acceptance error rate was not satisfied; 
}{ 00 δμμδμμ ≥−≤− yxyx , but this conclusion is uncertain because the sample size was too 

small. 
 
 M-2.1.3  Example of the Student's Two-Sample t-Test (Equal Variances) for Simple and 
Systematic Random Samples.  Consider the case where nickel (Ni) surface soil concentrations are 
compared between Site A and Background using the test:  
 
 oo yxH δμμ ≤−: ,  0: δμμ >− yxAH  . 
 
Let X refer to the site Ni concentrations and Y to the background Ni concentrations. Let δ0 = 0. 
 
 M-2.1.3.1  The following Ni concentrations are obtained for the site soil (m = 6): 2.665, 
3.610, 5.470, 7.150, 8.340, and 7.960 mg/kg. 
 
 M-2.1.3.2  The following Ni concentrations are obtained for the background soil (n = 10): 
5.140, 7.460, 5.990, 3.360, 3.190, 2.870, 5.950, 1.720, 4.770, and 5.605 mg/kg. 
 
 M-2.1.3.3  In this example, the Shapiro-Wilk test was used to test the assumption of nor-
mality and an F-test was used to test the assumption of equal variances. Because the data have 
equal variances at a significance level of 0.05, the Student’s two-sample t-test is more appropri-
ate. 
 

 Sample Mean Sample Variance Sample Size 
Site data (X) 5.87 5.53 6 
Background data (Y) 4.61 3.12 10 
 
 M-2.1.3.4  Using methods presented above in Paragraph M-2.1, determine if the vari-
ances of the two populations are equal. If the variances of the two populations are not equal, use 
Satterthwaite’s t-test (Paragraph M-2.2). Otherwise, compute the pooled standard deviation: 
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 M-2.1.3.5  Calculate  
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 M-2.1.3.6  Because we want an 80% level of confidence, 20.0=α . So, 8681.014,80.0 =t . 
Now compare the calculated value, t, with the critical value, 14,80.0t : 8681.022.1 > . Therefore, 
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reject 0H . At the 80% level of confidence, the mean concentration of Ni at Site A is greater than 
the mean background concentration of Ni. 
 
 M-2.2  Satterthwaite’s t-Test (Unequal Variances).  If the two variances are not equal, 
the use of Satterthwaite’s t-test is recommended. Directions are provided below in Paragraph M-
2.2.1, followed by an example in Paragraph M-2.2.2. 
  
 M-2.2.1  Directions for Applying Satterthwaite’s t-Test to Unequal Variances.  This de-
scribes the steps for applying the two-sample t-test for differences between the population means 
for: Case 1: oyxH δμμ ≤−:0 vs. 0: δμμ >− yxAH ; and Case 2: 00 : δμμ ≥− yxH  vs. 

0: δμμ <− yxAH , which is given in braces { }. 
 

 M-2.2.1.1  Verify that both data sets come from a normal distribution, using the tests 
presented in Appendices F and J, such as the Shapiro-Wilk test (Paragraph F-3.2) and a normal 
probability plot (Paragraph J-5.5).  
 

 

 M-2.2.1.2  Calculate the sample mean, x , and the sample variance, 2
Xs  (Appendix C), for 

sample 1 and compute the sample mean, y , and the sample variance, 2
Ys , for sample 2. 

 
 M-2.2.1.3  Test for equal variances, using tests presented in Appendix N, such as Bart-
lett’s test (Paragraph N-3). If the variances are approximately equal, use the two-sample t-test 
(presented in Paragraph M-2.2.2). Otherwise, compute the standard deviation for unequal vari-
ances: 
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 M-2.2.1.4  Calculate  
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 M-2.2.1.5  Use Table B-23 of Appendix B to find the critical value, να ,1−t , such that 

)1(100 α− % of the t-distribution with v degrees of freedom is below να ,1−t , and  
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Round down the degrees of freedom to the nearest integer. Compare t to the critical value: 
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 M-2.2.1.5.1  If }{ ,1,1 νανα −− −<> tttt , 0H may be rejected.  
 
 M-2.2.1.5.2  If }{ ,1,1 νανα −− −≥≤ tttt , there is not enough evidence to reject 0H . There-
fore, the false acceptance error rate will need to be verified. Go to M-2.2.1.6. 
 
 M-2.2.1.6  If 0H  was not rejected, calculate either the power of the test or the sample 
size necessary to achieve the false rejection and false acceptance error rates. To calculate the 
power, assume that the true values for the mean and standard deviation are those obtained in the 
sample and use a statistical software package to generate the power curve of the two-sample t-
test. A simple method to check on statistical power does not exist. 

 
 M-2.2.1.7  The results of the test could be: 
 
 M-2.2.1.7.1  0H  is rejected: }{ 00 δμμδμμ <−>− yxyx . 
 
 M-2.2.1.7.2  0H  is not rejected and the false acceptance error rate is satisfied, 

}{ 00 δμμδμμ ≥−≤− yxyx . 
 
 M-2.2.1.7.3 0H  is not rejected but the false acceptance error rate is not satisfied; 0H  is 
uncertain because the sample size was too small. 
 
 M-2.2.2  Example of Applying Satterthwaite’s t-test to Unequal Variances.  Because we 
want a 95% level of confidence, 05.0=α  and v = 6 (round down to the nearest integer). So, 

943.16,95.0 =t . Now compare the calculated value (t) with the critical value, 6,95.0t . Because 
943.1031.1 ≤− , there is not enough evidence to reject 0H . 

 
 M-2.2.2.1  As a result of not having enough evidence to reject the null hypothesis, it is 
necessary to calculate either the power of the test or the sample size necessary to achieve the 
false rejection and false acceptance error rates. DEFT can be used to evaluate power and sample 
size and is presented in this example. To calculate the power of the test, one must consider what 
an acceptable difference among the means is before concluding H0 should be rejected. The dif-
ference that one is willing to accept depends on the detection limits achieved, the range of con-
centrations from each data set, and what is considered to have practical significance vs. statistical 
significance. 
 
 M-2.2.2.2  The power curve (Figure M-1) shows where a statistically significant differ-
ence between the means was assumed to be 1 mg/kg (the region between the vertical dashed and 
solid lines). According to DEFT, 21 samples are needed for the estimated performance curve. In 
the above example, the site data have 36 samples and the background data only have 8. There-
fore, there may be a need to take more background samples. It is important to note that the true 
difference in the mean (4.619 – 4.925 = –0.31) is to the left of the action level. 
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Figure M-1.  Estimated power performance curve. 
 

 
 M-2.3  Matched Pairs t-Test. 
 
 M-2.3.1  Introduction.  Sometimes, the two populations of interest represent different 
measurements on the same homogenous group. For example, contaminant concentration in 
groundwater before and after a certain remediation treatment may need to be compared. If meas-
urements are taken from the same set of wells both before and after treatment, we can match the 
results by well. That is, each well will have a result from before the treatment and a result from 
after the treatment. Under this experimental design, the observed differences for each well before 
and after treatment become the sample data because we expect the two results from each well to 
be more homogeneous than the results among wells. 
 
 M-2.3.1.1  The differences are then analyzed using the one-sample t-test if the assump-
tions for that test are met. Namely, the one-sample t-test assumes the differences represent a ran-
dom sample. It also assumes that the average difference follows a normal distribution. If the 
normal assumption is not valid, Paragraph M-4.1.6 discusses a non-parametric alternative for 
matched pairs designs. In addition to matched pairs, one would ideally assign the order of the 
treatments randomly to each subject, although that would not be possible in the groundwater 
remediation example. Matching can also occur between subjects that are closely alike in all re-
spects except the treatment that is applied. 
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 M-2.3.1.2  The matched pairs t-test is commonly used to compare site contaminant con-
centrations before and after a treatment: 
 

BAH μμ ≥:0 , BAAH μμ <:  . 
 
 M-2.3.1.3  The “true” mean concentration before treatment and the “true” mean concen-
tration after treatment are denoted by μB and μA, respectively. The before treatment mean is often 
referred to as the “baseline” mean. Directions are provided below in Paragraph M-2.3.2, fol-
lowed by an example in Paragraph M-2.3.3. 
 
 M-2.3.2  Directions to Apply the Matched Pairs t-test for Differences Between the Means 
Before and After a Treatment.  Steps to apply the Matched Pairs t-test for differences between 
the means for Case 1 and Case 2 are as follows: Case 1: BAH μμ ≥:0 , BAAH μμ <: ; and Case 
2: BAH μμ ≤:0 , BAAH μμ >: , which is given in braces { }. 

 
 M-2.3.2.1  Subtract the before treatment concentration (Bi) from the corresponding after 
treatment concentration (Ai) for each pair of results (Bi, Ai) to obtain the differences: 
 
 iii BAd −=  . 
 
 M-2.3.2.2  Verify that the differences, ndddd ...,, 321 , are normal, using procedures in 
Appendices F and J, such as the Shapiro-Wilk test (Paragraphs F-3.2 and F-3.3) and a normal 
probability plot (Paragraphs J-5.5 and J-5.6). 
 

 M-2.3.2.3  Calculate the sample mean, d , and the sample variance, 2
ds  (Appendix D). 

 
 M-2.3.2.4  Calculate  
 

 
ns

dt
d

= . 

 
 M-2.3.2.5  Use Table B-23 of Appendix B to find the critical value, 1,1 −− nt α , such that 

100)1( α− % of the t distribution with (n – 1) degrees of freedom is below 1,1 −− nt α . 
 
 M-2.3.2.5.1  If }{ 1,11,1 −−−− >−< nn tttt αα , reject 0H . Go to M-2.3.2.7.  
 
 M-2.3.2.5.2  If }{ 1,11,1 −−−− ≤−≥ nn tttt αα , there is not enough evidence to reject 0H . 
Therefore, the false acceptance error rate will need to be verified. Go to M-2.3.2.6.  
 
 M-2.3.2.6  To calculate the power of the test, assume that the true values for the mean and 
standard deviation are those obtained in the sample and use a statistical software package like the 
DEFT software (EPA QA/G-4D) or the DataQUEST software (EPA QA/G-9D) to generate the 



EM 1110-1-4014 
15 Jan 07 
 

M-9 

power curve of the matched pairs t-test. If only one false acceptance error rate (β) has been speci-
fied (at µ1), it is possible to approximately calculate the sample size that achieves the DQOs, as-
suming the true mean and standard deviation are equal to the values estimated from the sample, 
instead of calculating the power of the test. A derivation of the following formula is given in Ap-
pendix A of EPA 600/R-96/055, QA/G-4. 
 
 M-2.3.2.7  Calculate:  
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where Zp is the p100th percentile of the standard normal distribution (Table B-15 of Appendix B). 
Round m up to the next integer. If nm ≤ , the false acceptance error rate has been satisfied. If 

nm > , the false acceptance error rate has not been satisfied.  
 
 M-2.3.2.8  The results of the test could be: 
 
 M-2.3.2.8.1  0H  is rejected; }{ BABA μμμμ >< . 
 
 M-2.3.2.8.2  0H  is not rejected and the false acceptance error rate is satisfied; 

}{ BABA μμμμ ≤≥ . 
 
 M-2.3.2.8.3  0H  is not rejected and the false acceptance error rate was not satisfied; 

}{ BABA μμμμ ≤≥ , but this conclusion is uncertain because the sample size was too small. 
 
 M-2.3.3  Example of the Matched Pairs t-Test for the Difference Between Means Before 
and After Treatment.  Consider the case where the results of a groundwater remediation proce-
dure are compared before and after treatment to determine if the remediation has decreased the 
concentration of the contaminant. Test the null hypothesis that the treatment had no lowering ef-
fect at the 95% level of confidence: 
 
 BAH μμ ≥:0 ,  BAAH μμ <:  . 
 
 M-2.3.3.1  The data consist of measured TCE concentrations (mg/L) at monitoring wells 
before and after a treatment-test, given in Table M-1. 
 
 M-2.3.3.2  Determine if the differences follow a normal distribution. A Shapiro-Wilk test 
for normality does not reject the hypothesis that the differences are normal (p = 0.4248). So, as-
suming normality is reasonable. 
 
 M-2.3.3.3  Calculate  
 



EM 1110-1-4014 
15 Jan 07 

 

M-10 

 10.4
109.13
0.18
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−

==
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dt
d

.  

 
 M-2.3.3.4  Assume that we want a 95% level of confidence, 05.0=α . So, 833.19,95.0 =t . 
Now compare the calculated value, t, with the critical value 9,95.0t− : 833.110.4 −<− . Therefore, 
reject 0H . This means that there is a lower mean concentration of TCE after remediation. 
 
Table M-1 
Measured TCE Concentrations (mg/L) at Monitoring Wells Before and After a Treatment 
Test 

Sample ID Baseline (01/2000) Post–Test (12/2000) Difference 
Well 1 20.9 0.917 –20.0 
Well 2 9.17 8.77 –0.400 
Well 3 5.96 4.37 –1.59 
Well 4 41.5 4.34 –37.2 
Well 5 34.3 10.7 –23.6 
Well 6 19.7 1.48 –18.2 
Well 7 38.9 0.272 –38.6 
Well 8 8.18 0.520 –7.66 
Well 9 9.13 3.06 –6.07 
Well 10 28.5 1.90 –26.6 

 
M-3 Comparing Proportions and Percentiles: Two-Sample Test for Proportions.  This 
Paragraph considers hypotheses concerning two population proportions (or percentiles). The 
two-sample test for proportions can be used to compare two population percentiles or propor-
tions and is based on an independent random sample of m ( mxxx ,,, 21 K ) from the first popula-
tion and an independent random sample of size n ( nyyy ,,, 21 K ) from the second population. The 
sample proportion for the first population is represented by 1p and the sample proportion for the 
second population is represented by 2p . 
 
 M-3.1  Introduction.  The principal assumption for this non-parametric test is that of ran-
dom sampling from the two populations. The two-sample test for proportions is valid (robust) for 
any underlying distributional shape and is robust to outliers, providing they are not pure data er-
rors. Directions for a two-sample test for proportions for a simple random sample and a system-
atic simple random sample are given below in Paragraph M-3.2, followed by an example in 
Paragraph M-3.3. 
 
 M-3.2  Directions for Applying the Two-Sample Test for Proportions.  Directions for ap-
plying the two-sample test for proportions are presented for Case 1: 0210 : δ≤− PPH  and 

021: δ>− PPH A ; and Case 2: 0210 : δ≥− PPH  and 021: δ<− PPH A , which is given in braces 
{ }. Given m random samples mxxx ,,, 21 K  from the first population, and n samples from the sec-
ond population, nyyy ,,, 21 K , let 1k  be the number of points from sample 1 which exceed some 
concentration C, and let 2k  be the number of points from sample 2 that exceed C.  
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 M-3.2.1  Calculate the sample proportions: mkp /11 = , nkp /22 = .  
 
 M-3.2.2  Calculate the pooled proportion: )/()( 21 nmkkp ++= . 
 
 M-3.2.3  Compute:  
 
 1mp , )1( 1pm − , 2np , )1( 2pn − .  
 
If all of the above values are greater than or equal to 5, continue. Otherwise, seek assistance from 
a statistician as analysis is complicated. 
 
 M-3.2.4  Calculate:  
 
 )/1/1()1(/)( 21 nmppppz +−−=  
 
 M-3.2.5  Use Table B-15 of Appendix B to find the critical value, α−1Z , such that 

100)1( α− % of the normal distribution is below α−1Z . For example, if α = 0.05 then α−1Z  = 
1.645. 
 
 M-3.2.5.1  If }{ 11 αα −− −<> ZzZz , reject 0H . 
 
 M-3.2.5.2  If }{ 11 αα −− −≥≤ ZzZz , do not reject 0H . Proceed to M-3.2.6 to calculate the 
false acceptance error rate. 
 
 M-3.2.6  If H0 is not rejected, calculate either the power of the test or the sample size 
necessary to achieve the false rejection and false acceptance error rates. If only one false accep-
tance error rate (β) has been specified at P1 – P2, it is possible to calculate the sample sizes that 
achieve the DQOs (assuming the proportions are equal to the values estimated from the sample) 
instead of calculating the power of the test. To do this, calculate: 
 

 
( )

( )2
12

2
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=  . 

 
Zp is the th100p  percentile of the standard normal distribution (Table B-15 of Appendix B).  
 
 M-3.2.6.1  If m > m* and n > m*, then the false acceptance error rate has been satisfied.  
 
 M-3.2.6.2  If both m and n are below m*, the false acceptance error rate has not been sat-
isfied.  
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 M-3.2.6.3  If m* is between m and n, use a software package like the DEFT or Data-
QUEST to calculate the power of the test, assuming that the true values for the proportions 1P  
and 2P are those obtained in the sample.  
 
 M-3.2.6.4  If the estimated power is below 1 – β, the false acceptance error rate has not 
been satisfied. 
 
 M-3.2.7  The results of the test could be: 
 
 M-3.2.7.1  0H  is rejected; 021 δ>− PP { 021 δ<− PP }. 
 
 M-3.2.7.2  0H was not rejected, the false acceptance error rate was satisfied, and it seems 

021 δ≤− PP { 021 δ≥− PP }. 
 
 M-3.2.7.3  0H was not rejected, the false acceptance error rate was not satisfied, and it 
seems 021 δ≤− PP { 021 δ≥− PP }, but this outcome is uncertain because the sample size was 
probably too small. 
 
 M-3.3  Example of Two-Sample Test for Proportions for Simple and Systematic Random 
Samples.  Gasoline groundwater concentrations at Site A are compared to background concentra-
tions:  
 
 0210 : δ≤− PPH ,  021: δ>− PPH A  . 
 
 M-3.3.1  The groundwater site data are following (m = 15): 243, 700, 781, 385, 642, 97.2, 
233, 11.1, 10.60, 14.90, 14.90, 12.70, 9.57, 6.04, and 7.32 μg/L. 
 
 M-3.3.2  The groundwater background data are following (n = 45): 177.0, 4.27, 10.60, 
10.60, 14.90, 14.60, 12.70, 9.57, 95.70, 7.32, 7.32, 7.32, 6.58, 6.90, 6.90, 39.5, 4.27, 10.60, 
10.60, 14.90, 14.60, 12.70, 9.57, 6.04, 7.32, 7.32, 7.32, 146.00, 6.90, 6.90, 44.5, 4.27, 10.60, 
10.60, 14.90, 14.60, 12.70, 9.57, 6.04, 7.32, 7.32, 7.32, 111.00, 6.90, and 6.90 μg/L. 
 

 ki Sample Size 

Site data (i = 1) 7 15 

Background data (i = 2) 6 45 

 
where ki is the number of detected concentrations above the regulatory threshold (35 μg/L).  
 
 M-3.3.3  Determine whether or not 1mp , )1( 1pm − , 2np , )1( 2pn − are all greater than 5:  
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 467.015/7/11 === mkp  
 
 133.045/6/22 === nkp  
 
 57)467.0(151 >==mp   
 
 58)467.01(15)1( 1 >=−=− pm  
 
 56)133.0(452 >==np   
 
 539)133.01(45)1( 2 >=−=− pn . 
 
 M-3.3.4  Calculate the following: 
 
 217.0)4515/()67()/()( 21 =++=++= nmkkp  
 

 
72.2)45/115/1()217.01(217.0/)133.0467.0(

)/1/1)(1(/)( 21

=+−−=

+−−= nmppppz
 . 

 
 M-3.3.5  Because the level of confidence is 95%, 05.0=α . Using Table B-15, we find 
that 645.105.01 =−Z . Now compare the calculated value, z, with the critical value, 05.01−Z : 

645.174.2 > .  
 
 M-3.3.6  Therefore, there is enough evidence to reject H0 (i.e., the results suggest that the 
proportion of samples with gasoline levels above the regulatory threshold in the site well samples 
is greater than the proportion above the regulatory threshold in the background well samples). 
 
M-4 Nonparametric Comparisons of Two Populations 
 
 M-4.1  The Wilcoxon Rank Sum Test.  The Wilcoxon rank sum test is a nonparametric 
test that can be used to compare two population distributions based on n independent random 
samples ( nxxx ,,, 21 K ) from the first population, and m independent random samples 
( myyy ,,, 21 K ) from the second population. The most general form of the hypotheses for a one-
tailed Wilcoxon rank sum test can be stated in terms of the probability that an observation from 
distribution Y exceeds a value from distribution X, such as: 
 
 ( ) ( ) 5.0:,5.0:0 <<≥< YXPHYXPH A  . 
 
 M-4.1.2  Introduction.  Hypotheses on the relative rank of the mean of each population 
can also be formulated with the additional assumption that the two underlying distributions have 
the same shape and dispersion (Conover, 1980). That is, one distribution differs by some fixed 



EM 1110-1-4014 
15 Jan 07 

 

M-14 

amount (or is increased by a constant) when compared to the other distribution. An important 
advantage of the Wilcoxon rank sum test is its partial robustness to outliers, because the analysis 
is conducted on rankings of the observations. This limits the influence of outliers because a given 
observation can be no more extreme than the first or last rank. Directions and an example for the 
Wilcoxon rank sum test are given in Paragraphs M-4.1.3 and M-4.1.4, respectively. If a rela-
tively large number of samples have been taken, it is more efficient to use the large sample ap-
proximation to the Wilcoxon rank sum test (Paragraph M-4.1.6) to perform the hypothesis test. 
 
 M-4.1.3  Directions for the Wilcoxon Rank Sum Test for Simple and Systematic Random 
Samples.   
 
 M-4.1.3.1  Let nxxx ,,, 21 K  represent the n observations from population 1 and 

myyy ,,, 21 K  represent the m observations from population 2, where both n and m are less than 
or equal to 20.  
 
 M-4.1.3.1.1  Case 1: 
 
 ( ) 5.0:0 ≥< YXPH :  Values of X tend to be smaller than or equal to values of Y. 
 
 ( ) 5.0: << YXPH A :  Values of X tend to be larger than values of Y.  
 
 M-4.1.3.1.2  Case 2: 
 
 ( ) 5.0:0 ≤< YXPH :  Values of X tend to be larger than or equal to values of Y.  
 
 ( ) 5.0: >< YXPH A :  Values of X tend to be smaller than values of Y. 
 
 M-4.1.3.1.3  Case 3: 
 
 ( ) 5.0:0 =< YXPH :  Values of X tend to be equal to values of Y.  
 
 ( ) 5.0: ≠< YXPH A :  Values of X tend to be smaller than or greater than values of Y. 
 
 M-4.1.3.2  If either m or n is larger than 20 and the smaller of the two is at least 4 (Leh-
mann, 1975), use the large sample approximation described in Paragraph M-4.1.5. 
 
 M-4.1.3.3  Combine the two data sets and rank the measurements (from both data sets) 
from smallest to largest, keeping track of which population contributed each measurement.  
 
 M-4.1.3.3.1  Assign the rank of 1 to the smallest value of the combined data sets and note 
whether the smallest value is from population 1 or 2. 
 
 M-4.1.3.3.2  Assign the rank of 2 to the second smallest value of the combined data sets 
(noting the population), and so forth.  
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 M-4.1.3.3.3  If there are ties, assign the average of the ranks that would otherwise have 
been assigned to the tied observations. 
 
 M-4.1.3.4  Calculate R, the sum of the ranks of the data from population 1, and then cal-
culate: 
 

 
2

)1( +
−=

nnRW . 

 
 M-4.1.3.5  Use Table B-17 of Appendix B to find the critical value, αW  (or 2/αW  for 
Case 3). 
 
 M-4.1.3.6  Compare W to the critical value αW . 
 
 M-4.1.3.6.1  For Case 1, reject H0 if αWnmW −> .  
 
 M-4.1.3.6.2  For Case 2, reject H0 if αWW < .  
 
 M-4.1.3.6.3  For Case 3, reject H0 if 2/αWnmW −>  or 2/αWW < .  
 
 M-4.1.3.7  The results of the test could be: 
 
 M-4.1.3.7.1  0H was rejected and it seems values from population 1 tend to be greater 
than (Case 1), smaller than (Case 2), or different from (Case 3) values from population 2. 
 
 M-4.1.3.7.2  0H was not rejected, and it seems that values from population 1 tend to be 
smaller than or equal to (Case 1), greater than or equal to (Case 2), or not different from (Case 3) 
values from population 2. 
 
 M-4.1.3.7.3  If 0H is not rejected, it should be determined whether adequate power was 
achieved. However, as power calculations tend to be complex and difficult to do manually, it is 
recommended that a statistician be consulted. 
 
 

 M-4.1.4  Example of the Wilcoxon Rank Sum Test for Simple and Systematic Random 
Samples.   
 
 M-4.1.4.1  Consider the Case 1 (Paragraph M-4.1.3), where lead (Pb) surface soil con-
centrations are compared between Site A and background at a significance level of α = 0.05 us-
ing the test. 
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 M-4.1.4.1.1  0H : Site A Pb concentrations tend to be less than or equal to background Pb 
concentrations. 
 
 M-4.1.4.1.2  AH : Site A Pb concentrations tend to be greater than background Pb con-
centrations. 
 
 M-4.1.4.2  Suppose the Pb surface site concentrations (X) are as follows (n = 20): 8.24, 
6.57, 4.48, 4.34, 16.00, 3.83, 4.11, 3.48, 3.66, 5.01, 93.80, 3.70, 129.00, 4.92, 91.80, 3.86, 4.21, 
4.32, 10.00, and 9.38 mg/kg.  
 
 M-4.1.4.3  Suppose the Pb surface background concentrations (Y) are as follows (m = 
16): 3.81, 3.68, 3.72, 3.68, 5.97, 4.12, 6.42, 4.13, 8.88, 3.01, 5.34, 3.74, 10.70, 3.86, 10.80, and 
4.40 mg/kg. 
 
Table M-2 
Example M-4.1.4 Pb Concentrations 

Location Result Rank Location Result Rank 
background 3.01 1 background 4.4 19 
Site 3.48 2 site 4.48 20 
Site 3.66 3 site 4.92 21 
background 3.68 4.5 site 5.01 22 
background 3.68 4.5 background 5.34 23 
Site 3.70 6 background 5.97 24 
background 3.72 7 background 6.42 25 
background 3.74 8 site 6.57 26 
background 3.81 9 site 8.24 27 
Site 3.83 10 background 8.88 28 
background 3.86 11.5 site 9.38 29 
Site 3.86 11.5 site 10.0 30 
Site 4.11 13 background 10.7 31 
background 4.12 14 background 10.8 32 
background 4.13 15 site 16.0 33 
Site 4.21 16 site 91.8 34 
Site 4.32 17 site 93.8 35 
Site 4.34 18 site 129.0 36 
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=
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nnRW  

 
 10805.0 ==WWα  
 
 212108)16)(20( =−=− αWnm  . 
 
 M-4.1.4.4  Because 2125.199 ≤ , H0 cannot be rejected. There is insufficient evidence to 
conclude that the lead concentrations from Site A are greater than background lead concentra-
tions. 
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 M-4.1.5  Large Sample Approximation of the Wilcoxon Rank Sum Test.  When a rela-
tively large number of samples has been taken, it is more efficient to use a large sample ap-
proximation of the Wilcoxon rank sum test to obtain the critical value of W. Directions and an 
example are presented in Paragraphs M-4.1.5.1 and M-4.1.5.2, respectively. Required sample 
size to achieve a specified power is explored in Paragraphs M-4.1.4.3 and M-4.1.4.4. 
 
 M-4.1.5.1  Directions for a Large Sample Approximation of the Wilcoxon Rank Sum Test 
for Simple and Systematic Random Samples.   
 

 M-4.1.5.1.1  Let nxxx ,,, 21 K  represent the n observations from population 1 and 
myyy ,,, 21 K  represent the m observations from population 2 where either n or m is greater than 

20 and the smaller of n and m is at least 4 (Lehmann, 1975). The following hypothesis tests are 
considered: 
 
 M-4.1.5.1.1.1  Case 1.  ( ) 5.0:0 ≥< YXPH , ( ) 5.0: << YXPH A . 
 
 M-4.1.5.1.1.2  Case 2.  ( ) 5.0:0 ≤< YXPH , ( ) 5.0: >< YXPH A . 
 
 M-4.1.5.1.1.3  Case 3.  ( ) 5.0:0 =< YXPH , ( ) 5.0: ≠< YXPH A . 
 
 M-4.1.5.1.2  List and rank the measurements from both populations from smallest to 
largest, keeping track of which population contributed each measurement.  
 
 M-4.1.5.1.2.1  The rank of 1 is assigned to the smallest value of the combined data sets, 
the rank of 2 to the second smallest value of the combined data sets, and so forth. 
 
 M-4.1.5.1.2.2  If there are ties, assign the average of the ranks that would otherwise have 
been assigned to the tied observations. 
 
 M-4.1.5.1.3  Calculate R, the sum of the ranks of the data from population 1, and then 
calculate:  
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 M-4.1.5.1.4  Calculate:  
 

 12/)1(
2

+++= mnmnZmnw pp  . 

 
 M-4.1.5.1.4.1  Case 1.  α−= 1p  
 
 M-4.1.5.1.4.2  Case 2: α=p   
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 M-4.1.5.1.4.3  Case 3.  Calculate both )2/(2/ αα =pw  and )2/1(2/1 αα −=− pw  (Leh-
mann, 1975). 
 
 M-4.1.5.1.5  Note that pZ  is the thp100  percentile of the standard normal distribution 
(Table B-15 of Appendix B). 
 
 M-4.1.5.1.5.1  For Case 1, reject H0 if α−> 1wW .  
 
 M-4.1.5.1.5.2  For Case 2, reject H0 if αwW < .  
 
 M-4.1.5.1.5.3  For Case 3, reject H0 if 2/1 α−> wW  or 2/αwW < .  
 
 M-4.1.5.1.6  The results of the test could be as follows.  
 
 M-4.1.5.1.6.1  H0 was rejected and it seems values from population 1 tend to be greater 
than (Case 1), smaller than (Case 2), or different from (Case 3) values from population 2. 
 
 M-4.1.5.1.6.2  H0 was not rejected, and it seems that values from population 1 tend to be 
smaller than or equal to (Case 1), greater than or equal to (Case 2), or not different from (Case 3) 
values from population 2. 
 
 M-4.1.5.2  Example of the Large Sample Approximation to the Wilcoxon Rank Sum Test 
for Simple and Systematic Random Samples. 
 
 M-4.1.5.2.1  Consider the case where lead (Pb) surface soil concentrations are compared 
between Site A and background at a significance level of 0.05 using the test (Case 1 in Paragraph 
M-4.1.5.1) (Table M-3). 
 
 M-4.1.5.2.1.1  0H : Site A Pb concentrations tend to be less than or equal to background 
Pb concentrations. 
 
 M-4.1.5.2.1.2  AH : Site A Pb concentrations tend to be larger than background lead con-
centrations. 
 
 M-4.1.5.2.2  Suppose the surface soil Pb concentrations for Site A (X) are: 8.24, 6.57, 
4.48, 4.34, 16.00, 3.83, 4.11, 3.48, 3.66, 5.01, 93.80, 3.70, 129.00, 4.92, 91.80, 3.86, 4.21, 4.32, 
10.00, and 9.38 mg/kg.  
 
 M-4.1.5.2.3  Suppose the background surface soil Pb concentrations (Y) are: 3.05, 3.81, 
3.68, 3.72, 4.20, 3.68, 5.97, 4.12, 6.42, 6.20, 4.13, 8.88, 3.01, 15.5, 5.34, 3.74, 20.6, 10.70, 3.86, 
10.80, and 4.40 mg/kg. 
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Table M-3 
Example M-4.1.5.2 Pb Concentrations 

Location Result Rank Location Result Rank 
Background 3.01 1 site 4.48 22 
Background 3.05 2 site 4.92 23 
Site 3.48 3 site 5.01 24 
Site 3.66 4 background 5.34 25 
Background 3.68 5.5 background 5.97 26 
Background 3.68 5.5 background 6.2 27 
Site 3.7 7 background 6.42 28 
Background 3.72 8 site 6.57 29 
Background 3.74 9 site 8.24 30 
Background 3.81 10 background 8.88 31 
Site 3.83 11 site 9.38 32 
Site 3.86 12.5 site 10 33 
Background 3.86 12.5 background 10.7 34 
Site 4.11 14 background 10.8 35 
Background 4.12 15 background 15.5 36 
Background 4.13 16 site 16 37 
Background 4.2 17 background 20.6 38 
Site 4.21 18 site 91.8 39 
Site 4.32 19 site 93.8 40 
Site 4.34 20 site 129 41 
Background 4.4 21 — — — 

 
 M-4.1.5.2.4  Note that tied values occur at for concentrations 3.68 and 3.86. These ties 
are assigned the average of the ranks they would otherwise have been assigned. The rank of 3.68 
is 5.5, which is the average of ranks 5 and 6, and the rank of 3.86 is 12.5, which is the average of 
ranks 12 and 13. 
 
 M-4.1.5.2.5  Population 1 is the lead surface site data (n = 20), and population 2 is the 
background lead data (m = 21). Calculate W as:  
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 M-4.1.5.2.6  Calculate  
 

 12/)12120(2021645.1
2
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=+++= mnmnZmnw pp = 273.1 

 
 645.195.01 === − ZZZ p α . 
 
 M-4.1.5.2.6  Compare the calculated statistic W to the critical value α−1w , (248.5 < 
273.1). Because α−≤ 1wW , do not reject the null hypothesis. Lead concentrations from Site A 
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may be less than or equal to background lead concentrations. The power of the test needs to be 
determined (refer to Paragraph M-4.1.5.3).  
 
 M-4.1.5.3  Directions for Calculating Sample Size to Achieve a Specified Power for the 
Wilcoxon Rank Sum Test.   
 
 M-4.1.5.3.1  Noether (1987) discusses the determination of an adequate sample size 
based on a predefined level of power to apply the Wilcoxon rank sum test for the following hy-
pothesis test. The n values of X ( nxxx ,,, 21 K ) compared to m values of Y ( myyy ,,, 21 K ): 
 
 M-4.1.5.3.1.1  Case 1.  ( ) 5.0:0 ≥< YXPH ,  ( ) 5.0: << YXPH A . 
 
 M-4.1.5.3.1.2  Case 2.  ( ) 5.0:0 ≤< YXPH ,  ( ) 5.0: >< YXPH A . 
 
 M-4.1.5.3.1.3  Case 3:  ( ) 5.0:0 =< YXPH ,  ( ) 5.0: ≠< YXPH A . 
 
 M-4.1.5.3.2  The total number of samples collected, N = n + m, is compared with a con-
servative estimate of the number of samples N ′  required to achieve some desired power 1 – β  
Under the assumption that the test statistic (in this case, the large sample approximation for the 
Wilcoxon rank sum statistic in Paragraph M-4.1.5.1) is normally distributed, N ′  is determined 
as follows. For Cases 1 and 2:  
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and for Case 3: 
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where qZ  = q quantile of the standard normal distribution (from Table B-15) 
 α  = significance level of the test 
 β−1  = desired power for the test 

  
N
nc =  

 p ′′   =  ( )YXP < . 
 
 M-4.1.5.3.4  Setting c equal to 0.5 will be best unless there are reasons to sample more 
heavily from one of the populations. The value of p ′′  can be taken from past information, a pi-
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lot sample, or chosen to represent a meaningful shift in the data (Noether, 1987). The normality 
of the test statistic under the null hypothesis is generally valid if either n or m exceeds 20 and 
the smaller of the two is at least 4. If the suggested sample size does not meet these require-
ments, consult a statistician. 
 
 M-4.1.5.4  Example of Calculating Sample Size to Achieve a Specified Power for the Wil-
coxon Rank Sum Test.  Suppose Pb surface soil concentrations at a site are to be compared to 
background concentrations using a 95% level of confidence ( 05.0=α ) using the following hy-
pothesis test (Case 1). 
 
 M-4.1.5.4.1  0H : Site A Pb concentrations tend to be less than or equal to background 
concentrations. 
 
 M-4.1.5.4.2  AH : Site A Pb concentrations tend to be higher than background concentra-
tions. 
 
 M-4.1.5.4.3  We wish to ensure that the sample size is large enough to find a meaningful 
elevation of lead concentrations with 80% probability ( 20.0=β ). Suppose historical information 
indicates that the probability of site lead concentration being less than background lead concen-
tration is about 1/3. We decide to use this as our estimate of p ′′ . We wish to take an equal num-
ber of samples from the site and background, so that c = 0.5. The required sample size to meet 
the power requirement is: 
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 M-4.1.5.4.4  As we wish to collect and equal number of samples from the site and back-
ground, the calculated required total sample size is rounded up to the next largest even whole 
number, 76 (an even number is required because it is being assumed that the required sample 
size is equal to the sum of an equal number of site and background samples). If it is assumed that 
38 site plus 38 background samples are required to achieve adequate power for the test per-
formed in Paragraph M-4.1.5.2, it follows that, though the null hypothesis was not rejected, the 
result is not conclusive (as only 20 site and 21 background samples were collected). 
 
 M-4.1.6  Matched Pairs Wilcoxon Signed Ranks Test.  As discussed in Paragraph M-2.3, 
matching subjects can lead to efficient comparisons between two populations. However, the ob-
served differences between treatments will not always appear to come from a normal distribu-
tion. In that case, the one-sample Wilcoxon signed ranks test that was discussed in Appendix L 
can be used to test whether the mean or median difference differs significantly from zero. Direc-
tions for applying the Wilcoxon signed ranks test to a matched pairs design are presented in 
Paragraph M-4.1.6.1 and an example is presented in Paragraph M-4.1.6.2. See the discussion in 
Appendix L for more details on applying the Wilcoxon signed ranks test. 
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 M-4.1.6.1  Directions for the Wilcoxon Signed Ranks Test for Matched Pairs.  The fol-
lowing describes the steps for applying the Wilcoxon signed ranks test for a matched pairs de-
sign when the sample size, n, is less than 20 for: Case 1: BAH μμ ≥:0 , BAAH μμ <: ; and Case 
2: BAH μμ ≤:0 , BAAH μμ >: , which is given in braces { }. 
 

 M-4.1.6.1.1  Subtract each before concentration (Bi) from the after concentration (Ai) to 
get the difference: 
 
 iii BAd −=  . 
 
If any of the differences are zero, delete them and correspondingly reduce the sample size (n).  
 
 M-4.1.6.1.2 Assign ranks from 1 to n based on ordering the absolute deviations id  (i.e., 
magnitude of differences ignoring the sign) from smallest to largest. The rank 1 is assigned to the 
smallest value, the rank 2 to the second smallest value, and so forth. If there are ties, assign the 
average of the ranks that would otherwise have been assigned to the tied observations. 
 
 M-4.1.6.1.3  Assign the sign for each observation to create the signed rank. The sign is 
positive if the deviation di is positive and the sign is negative if the deviation di is negative. 
Calculate R, the sum of the ranks with a positive sign. 
 
 M-4.1.6.1.4  Use Table B-24 of Appendix B to find the critical value nw ,α . 
 
 M-4.1.6.1.5  Compare the calculated test statistic, R, to the critical value: 
 
 M-4.1.6.1.5.1  If nwnnR ,}2/)1({ α−+≤ }{ , nwR α≥ , 0H may be rejected.  
 
 M-4.1.6.1.5.2  If nwnnR ,}2/)1({ α−+> }{ , nwR α< , there is not enough evidence to re-
ject 0H ; verify the false acceptance error rate.  
 
 M-4.1.6.1.6  If H0 was not rejected, calculate either the power of the test or the sample 
size necessary to achieve the false rejection and false acceptance error rates using a software 
package like DEFT (EPA QA/G-4D).  
 
 M-4.1.6.1.7  The results of the test may be:  
 
 M-4.1.6.1.7.1  0H  is rejected; }{ BABA μμμμ >< . 
 
 M-4.1.6.1.7.2  H0 is not rejected and the false acceptance error rate is satisfied; 

}{ BABA μμμμ ≤≥ . 
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 M-4.1.6.1.7.3  H0 is not rejected and the false acceptance error rate was not satisfied; 
}{ BABA μμμμ ≤≥ , but this conclusion is uncertain because the sample size was too small. 

 
 M-4.1.6.2  Example of the Matched Pairs Wilcoxon Signed Ranks Test for the Difference 
Between Means Before and After Treatment.  Consider the case where the results of a groundwa-
ter remediation procedure are compared before and after treatment to see if the remediation has 
lowered the concentration of the contaminant. Test the hypothesis that the treatment had no low-
ering effect at the 95% level of confidence: 
 
 BAH μμ ≥:0 ,  BAAH μμ <:  . 
 
 M-4.1.6.2.1  The data consist of measured TCE concentrations (mg/L) at monitoring 
wells before and after treatment (Table M-4). Negative values of the difference support the alter-
native hypothesis. 

 
Table M-4 
Measured TCE Concentrations (mg/L) at Monitoring Wells Before and After Treatment 
for Example M-4.1.6.2 

Sample Baseline (01/2000) Post–Test (12/2000) Difference Signed Rank 
Well 1 20.9 0.917 –20.0 –6 
Well 2 9.17 8.77 –0.400 –1 
Well 3 5.96 4.37 –1.59 –2 
Well 4 41.5 4.34 –37.2 –9 
Well 5 34.3 10.7 –23.6 –7 
Well 6 19.7 1.48 –18.2 –5 
Well 7 38.9 0.272 –38.6 –10 
Well 8 8.18 0.520 –7.66 –4 
Well 9 9.13 3.06 –6.07 –3 

Well 10 28.5 1.90 –26.6 –8 

 
 M-4.1.6.2.2  The differences are roughly symmetrical so the Wilcoxon signed ranks test 
can be applied. 
 
 M-4.1.6.2.3  Because the sign ranks are all negative, 0=R . 
 
 M-4.1.6.2.4  Using Table B-24 of Appendix B, we find the critical value 1110,05.0 =w . 
 
 M-4.1.6.2.5  Recall that negative values of the difference support the alternative hypothe-
sis. Therefore we reject 0H  if R is smaller than the critical value. Comparing the calculated test 
statistic and the critical value, 4411}2/)11(10{}2/)1({0 , =−=−+≤= nwnnR α , so 0H  is re-
jected. The treatment appears to have lowered TCE concentration in groundwater. 
 
 M-4.1.6.2.6  If the differences do not meet the symmetry assumption of the Wilcoxon 
signed ranks test, the one-sample sign test could be used for the analysis. However, a specific 
example will not be presented here. 
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 M-4.2  The Quantile Test.  The quantile test is used to compare two populations using m 
independent random samples (x1, x2,..., xm) from the first population and n independent random 
samples (y1, y2,..., yn) from the second population. The quantile test is useful in detecting in-
stances where only parts of the data are different rather than a complete shift in the data. It looks 
at a certain number of the largest data values to determine if too many data values from one 
population are present to be accounted for by pure chance. When the quantile test and the Wil-
coxon rank sum test (discussed above) are applied together, the combined tests are the most 
powerful at detecting true differences between two populations. 
 
 M-4.2.1  Introduction.  The quantile test assumes a set of random samples from popula-
tion 1 and an independent set of random samples from population 2. The quantile test is not ro-
bust to outliers, and assumes either a systematic (e.g., a triangular grid) or simple random 
sampling design. The quantile test may not be used for stratified designs. In addition, exact false 
rejection error rates are not available, only approximate rates. The quantile test is difficult to do 
by hand so directions are not included in this guidance, but the DataQUEST software (EPA 
QA/G-9D) can be used. Directions for a modified quantile test that can be done by hand are con-
tained below in Paragraph M-4.2.2, followed by an example in Paragraph M-4.2.3. 
 
 M-4.2.2  Directions for a Modified Quantile Test Done by Hand.  Let there be m meas-
urements from population 1 (the reference area or background group) and n measurements from 
population 2 (the test area). The modified quantile test can be used to detect differences in shape 
and location of the two distributions. For this test, the significance level,α , can either be ap-
proximately 0.10 or approximately 0.05.  
 
 M-4.2.2.1  0H : population 1 = population 2. 
 
 M-4.2.2.2  AH : population 2 > population 1. 
 
 M-4.2.2.3  Combine the two samples and order them from smallest to largest, keeping 
track of which sample a value came from. 
 
 M-4.2.2.4  Using Table B-25 of Appendix B, determine the critical number (C) for a 
sample size n from the reference area and sample size m from the test area using the significance 
levelα . If the Cth largest measurement of the combined population is the same as others, in-
crease C to include all of these tied values.  
 
 M-4.2.2.4.1  If the largest C measurements from the combined samples are all from popu-
lation 2 (the test area), then reject the null hypothesis and conclude that there are differences be-
tween the two populations. 

 
 M-4.2.2.4.2  Otherwise, the null hypothesis is not rejected and it appears that there is no 
difference between the two populations. 
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 M-4.2.3  Example of a Modified Quantile Test Done by Hand.  Consider the case where 
nickel surface soil concentrations are compared between Site A and background using the test 
(Table M-5). 
 
 M-4.2.3.1  0H : population 1 = population 2. 
 
 M-4.2.3.2  AH : population 1 > population 2. 
 
 M-4.2.3.3  Suppose data for nickel surface site data (population 1) are the m = 6 values: 
2.67, 3.61, 5.47, 7.15, 8.34, and 7.96 mg/kg.  
 
 M-4.2.3.4  Suppose data for nickel surface background data (population 2) are the n = 
10 values: 5.14, 7.46, 5.99, 3.36, 3.19, 2.87, 5.95, 1.72, 4.77, and 5.61 mg/kg. 
 
Table M-5 
Nickel Surface Soil Concentrations for Example M-4.2.3 

Location Result Rank 
Background 1.72 1 
Site 2.67 2 
Background 2.87 3 
Background 3.19 4 
Background 3.36 5 
Site 3.61 6 
Background 4.77 7 
Background 5.14 8 
Site 5.47 9 
Background 5.61 10 
Background 5.95 11 
Background 5.99 12 
Site 7.15 13 
Background 7.46 14 
Site 7.96 15 
Site 8.34 16 

 
 M-4.2.3.5  505.0,6,10,, == CC mn α ; because the fifth largest value is 5.99, there is no need 
to increase C.  
 
 M-4.2.3.6  Only three of the largest five values are from population 1 (site concentra-
tions), therefore the null hypotheses cannot be rejected. The result is that there is no difference 
between the site concentrations and the background concentrations of nickel. 
 
M-5 Multiple Population Tests.  This Paragraph describes procedures to evaluate data from 
more than two populations. One could accomplish the same objectives by applying the tests de-
scribed above multiple times. However, doing so would underestimate the true false rejection 
decision error rate. In other words, if multiple individual tests are done, H0 is rejected more fre-
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quently than desired. The tests described in this Paragraph control the overall false rejection de-
cision error rate by making multiple comparisons simultaneously. 
 
 M-5.1  One-Factor Analysis of Variance (ANOVA).  The one-factor ANOVA is a statisti-
cal procedure to determine whether differences in mean concentrations among two or more 
populations are statistically significant. When a single variable is being measured for multiple 
populations (e.g., the concentration of chromium at multiple sites), the one-factor ANOVA al-
lows the comparison of multiple population means in one test. Because the ANOVA test com-
pares all the means to one another simultaneously, large false positives rates associated with 
multiple separate pairwise mean comparisons are avoided. Multi-factor ANOVA tests would be 
used when comparing several variables from multiple populations (e.g., the concentration of ar-
senic and chromium at multiple sites), but these are more complex than one-factor ANOVA tests 
and are beyond the scope of this document. 
 
 M-5.1.1  Introduction.  There are two types of ANOVAs: parametric and nonparametric. 
The parametric ANOVA assumes that the errors, called residuals, are normally distributed with 
equal variance. The one-way parametric ANOVA model is the following: 
 
 jiijix ,, εμ +=  . 
 
The jix , denotes the jth measured value of the ith group, where the ith group contains ni values and i 
= 1, 2, …K (the number of groups or populations). The residuals ji ,ε  are assumed to be values of 
a random variable ε that possess a normal distribution with mean of zero and standard deviation 
of σ. The parameters iμ are the populations means for the groups; each possessing a common 
standard deviation σ. The equation is a model in the sense that it is of the form: 
 
 Measured value = Function one or more parameters + Residual (random error). 
 
(Also refer to the linear regression model in Appendix Q.) As the population means μi are un-
known, they are estimated by the sample group means:  
 

 
i

n

j ji
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x
x

i∑ == 1 ,
for i = 1, 2, …K. 

 
 M-5.1.1.1  Thus, the “true” residuals ji ,ε are estimated by the “sample” residuals as fol-
lows: 
 

ijiji xxe −= ,,  . 
 
The sample residuals for each group (e.g., the ni residuals for group i) must each be tested for 
normality and must be normally distributed. 
 
 M-5.1.1.2  The ANOVA is especially useful in situations where sample sizes are small. 
To apply a parametric one-way ANOVA, at least two groups must be present in the data and at 
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least two samples must be available for each group. Although the ANOVA assumes equal vari-
ances, the test is not sensitive to unequal variances as long as the violation is not severe. 
 
 M-5.1.1.3  Directions for the ANOVA are given in Paragraph M-5.1.2, followed by an 
example in Paragraph M-5.1.3.  
 
 M-5.1.2  Directions for the ANOVA Test.  Let Knnn ,,, 21 K  represent the sample sizes of 
each of the K sample populations to be compared to one another. Let the values from each popu-
lation be represented by jix ,  where Ki ,,2,1 K=  for the K groups and inj ,,2,1 K=  for the ob-
servations in the ith group. 
 
 M-5.1.2.1  KH μμμ === L210 : (no difference among the population means). 
 
 M-5.1.2.2  HA : at least one mean, iμ  is different from one or more of the other means. 
 
 M-5.1.2.3  Verify that the residuals are normally distributed with equal variances (see 
Appendix F and Appendix N, respectively).  
 
 M-5.1.2.4  Let %100)1( α−  represent the chosen significance level for the test, so α is 
the false rejection rate for the test. Set up the ANOVA table as follows: 
 

Source of 
Variation 

Degrees of  
Freedom (v) 

Sum of 
Squares Mean Square F-Value 
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Note that 
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 EGT ννν +=   
 
 SST = SSG + SSE . 
 
 M-5.1.2.5  It may be convenient to calculate MSE using the formula: 
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In this form, MSE is often referred to as the “pooled” variance for the K groups, where 2

is is the 
sample variance for the ith group: 
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 M-5.1.2.6  Use Table B-7 of Appendix B to determine the critical value, 

EG vvF ,,1 α− , where 

nmF ,,γ is the 100γ th percentile of the F distribution with m degrees of freedom for the numerator 
and n degrees of freedom for the denominator. Compare F to 

EG vvF ,,1 α− . If 
EG vvFF ,,1 α−> , then re-

ject 0H (the means of the sample populations are not all equal). Otherwise, conclude that there is 
no difference among the sample population means. If 0H  is rejected, perform multiple compari-
son tests to determine which populations are significantly different. 
 
 M-5.1.2.7  Statistical software sometimes outputs the coefficient of determination for the 
ANOVA:  
 
 2 SSG/SSTANOVAr = . 
 
The square root of this quantity is similar in function to the regression coefficient for an ordinary 
least squares regression line (refer to Appendix Q) in that it accounts for the variation in the 
measured values accounted for by the model (often referred to as the explained variation). A 
large value for 2

ANOVAr  (which ranges from 0 to 1) indicates that most of the variation is ascribable 
to differences between the group means. It can be shown that 
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Therefore, when the calculated value of the statistic F is small (i.e., when the null hypothesis is 
not rejected), 2

ANOVAr  will be near zero. 
 
 M-5.1.3  Example of ANOVA.  Suppose manganese (Mn) groundwater concentrations are 
going to be compared among the seven different wells at Site A using the following test with 
95% level of confidence. 
 
 M-5.1.3.1  KH μμμ === L210 :  (no difference among the sample means).  
 
 M-5.1.3.2  HA: at least one mean, iμ  is different from one or more of the other means.  
 
 M-5.1.3.3  Table M-6 presents the data. All Mn concentrations were detected, so no 
proxy concentrations are needed to evaluate the data. 
 
 M-5.1.3.4  The data were tested for equal variances using Bartlett’s test for equal vari-
ances (see Paragraph N-3). The data were also tested for normality using the Shapiro-Wilk test. 
Because the data were not normal, the data were transformed so that the residuals would follow a 
normal distribution. 
 
 M-5.1.3.5  Summary statistics for each well are presented in Table M-7. 
 
 M-5.1.3.6  Let %100)1( α−  represent the chosen significance level for the test, where 

.05.0=α  Note that in this example K = 7 and ni = 8 for i = 1, 2, … 7. Set up the ANOVA table 
as follows: 
 

Source of 
Variation 

Degrees of Free-
dom (v) 

Sum of 
Squares 

Mean 
Square 

F 
Value 

Groups 6 137.29 22.88 346.09 
Error 49 3.24 0.066  
Total 55 140.53   

 



EM 1110-1-4014 
15 Jan 07 

 

M-30 

 
 
Table M-6 
Manganese (Mn) Groundwater Concentrations to be Compared Among the Wells at Site A 

Well Location Result Log Result Well Location Result Log Result 
69-2-02 0.432 –0.839 69-2-06A 0.294 –1.224 
69-2-02 0.44 –0.821 69-2-06A 0.301 –1.201 
69-2-02 0.513 –0.667 69-2-06A 0.379 –0.970 
69-2-02 0.704 –0.351 69-2-06A 0.352 –1.044 
69-2-02 0.327 –1.118 69-2-06A 0.346 –1.061 
69-2-02 0.316 –1.152 69-2-06B 0.13 –2.040 
69-2-02 0.454 –0.790 69-2-06B 0.184 –1.693 
69-2-02 0.401 –0.914 69-2-06B 0.209 –1.565 
69-2-04 0.0504 –2.988 69-2-06B 0.2 –1.609 
69-2-04 0.0502 –2.992 69-2-06B 0.0739 –2.605 
69-2-04 0.054 –2.919 69-2-06B 0.0876 –2.435 
69-2-04 0.0523 –2.951 69-2-06B 0.126 –2.071 
69-2-04 0.0923 –2.383 69-2-06B 0.129 –2.048 
69-2-04 0.0556 –2.890 69-2-07 0.0137 –4.290 
69-2-04 0.0534 –2.930 69-2-07 0.019 –3.963 
69-2-04 0.0517 –2.962 69-2-07 0.0163 –4.117 
69-2-05 0.00684 –4.985 69-2-07 0.0195 –3.937 
69-2-05 0.00639 –5.053 69-2-07 0.0112 –4.492 
69-2-05 0.00631 –5.066 69-2-07 0.0112 –4.492 
69-2-05 0.00813 –4.812 69-2-07 0.0102 –4.585 
69-2-05 0.00747 –4.897 69-2-07 0.00946 –4.661 
69-2-05 0.00679 –4.992 69-2-08 0.563 –0.574 
69-2-05 0.00731 –4.919 69-2-08 0.512 –0.669 
69-2-05 0.00444 –5.417 69-2-08 0.475 –0.744 
69-2-06A 0.3 –1.204 69-2-08 0.546 –0.605 
69-2-06A 0.286 –1.252 69-2-08 0.276 –1.287 
69-2-06A 0.303 –1.194 69-2-08 0.383 –0.960 
   69-2-08 0.33 –1.109 
   69-2-08 0.27 –1.309 

 
Table M-7 
Summary Statistics 

Well Sample Size Mean of Log Result Standard Deviation of Log Result 
69-2-02 8 –0.832 0.2539 
69-2-04 8 –2.877 0.2026 
69-2-05 8 –5.018 0.1818 
69-2-06A 8 –1.144 0.1031 
69-2-06B 8 –2.008 0.3779 
69-2-07 8 –4.317 0.2832 
69-2-08 8 –0.907 0.3011 

 
 M-5.1.3.7  The power of an ANOVA F-test can be estimated prior to a study. Table B-28 
in Appendix B lists the power for K = 3 to 10 groups and significance levels of α = 0.2, 0.1, and 
0.05, where each group contains an equal number of samples n. To use the tables, the “effect 
size,” Δ , must be also estimated as: 
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 =Δ  (largest group mean – smallest group mean)/(MSE)1/2 . 
 
 M-5.1.3.8  The tables list various values of Δ . For a specified value of K, n, α, andΔ , the 
tables list the minimum power (probability) corresponding to the alternative hypothesis that all 
group means, other than the two extremes, are equal to the “grand mean,” which is equal to the 
median of the largest and smallest group means. When comparing K groups of equal size n, the 
tables are useful for determining approximately how large a sample size for each group is re-
quired to achieve a particular level of confidence 1 – α and power 1 – β. For example, for K = 3 
groups and α = 0.05, to detect a size effect Δ  = 1.0 (i.e., a difference between the largest and 
smallest mean equal to MSE1/2) with power of at least 1 – β = 0.80, the required sample size for 
each group 20≈n . 
 
 M-5.2  Kruskal-Wallis Test.  The Kruskal-Wallis test is the nonparametric version of the 
ANOVA. It is a statistical procedure to determine whether differences in median concentrations 
among a number of groups or multiple populations are statistically significant. The Kruskal-
Wallis allows the comparison of multiple population means in one test. If the test shows statisti-
cally significant differences among the groups, multiple comparison procedures can be used to 
identify which group or groups are different. 
 
 M-5.2.1  Introduction.  In terms of hypothesis tests, the null hypothesis is that all group 
medians are equal and the alternative hypothesis is that at least one group is different from one or 
more other groups. To test this hypothesis, no assumptions are required about the shape of the 
distributions; each group may have a different distribution. The Kruskal-Wallis test is used to 
evaluate whether the distributions are identical. Directions for the Kruskal-Wallis test are given 
below in Paragraph M-5.2.2, followed by an example in Paragraph M-5.2.3. 
 
 M-5.2.2  Directions for the Kruskal-Wallis Test.  Let %100)1( α−  represent the chosen 
significance level for the test. 
 
 M-5.2.2.1  Rank all xi,j observations from lowest to highest. Let Ri,j denote the rank of the 
xi,j observation.  

 
 M-5.2.2.1.1  Ties.  If two or more observations are numerically equal, then use an aver-
age rank for each observation. The average rank is calculated as the average of the ranks that the 
tied observations would have received had the observations been different. 

 
 M-5.2.2.1.2  Censored Data.  If any values are not-detected, it is appropriate to consider 
the ranks for these values equal to zero. (It is irrelevant what number is assigned to the non-
detected values as long as all such values are assigned the same number, and it is smaller than 
any detected value.) 
 
 M-5.2.2.2  Add the ranks of the observations in each group. Call the sum of the ranks for 
the ith group Ri. Also calculate the average rank for each group, iii nRR /= . If there are at least 
50% detected results and no tied values, then compute the Kruskal-Wallis statistic: 
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 M-5.2.2.3  If there are at least 50% detected results and there are tied values present in 
the data, then compute the adjusted Kruskal-Wallis statistic:  
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where g is the number of groups of distinct tied observations and )( 3

kkk wwW −= , where kw is 
the number of tied data in the tied group k. Note that the unique observations can be considered 
groups of size 1, with the corresponding 0)11( 3 =−=kW . If all the group medians are equal, 
then H = 0. As the differences between the group medians increase, H will also increase; so the 
larger the value of H, the less probable H0 is true. 
 
 M-5.2.2.4  Compare the calculated value H (or H ′ ) to the tabulated critical value for the 
chi-square distribution, 2

1,1 −− Kαχ , with K – 1 degrees of freedom and %100)1( α−  level of confi-
dence (found in Table B-2 of Appendix B).  
 
 M-5.2.2.5  Reject H0 if H > 2

1,1 −− Kαχ . If H0 is rejected use multiple comparison tests to 
determine which populations are significantly different. 
 
 M-5.2.3  Example of the Kruskal-Wallis Test.  Suppose lead groundwater concentrations 
are going to be compared among seven wells using the Kruskal-Wallis test with 95% level of 
confidence. 

 
 M-5.2.3.1  7210 : μμμ === KH  (i.e., no difference among the well means). 
 
 M-5.2.3.2  :AH  at least one mean is different from one or more of the other means. 



EM 1110-1-4014 
15 Jan 07 
 

M-33 

 
 M-5.2.3.3  Table M-8 presents the data. All lead concentrations were detected so no 
proxy concentrations were needed to evaluate the data. 
 
 M-5.2.3.4  The sum of the ranks for each of the seven groups is: 

 

2721 =R , 1682 =R , 5.623 =R , 4204 =R , 3045 =R , 5.736 =R , 2967 =R  
 

 M-5.2.3.5  Because there are at least 50% detected results and there are tied values pre-
sent in the data, compute the adjusted Kruskal-Wallis statistic: 
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The table below summarizes the g = 4 tied groups: 
 

Tied Rank Number of Tied Observations 
kw  

kkK wwW −= 3  

4 3 24 
12.5 2 6 
19.5 2 6 
21.5 2 6 
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 59.122

6,95.0
2

17,05.01
2

1,1 === −−−− χχχ α K .  
 
 M-5.2.3.6  Now compare the calculated value to the critical value, 48.91 > 12.59. As the 
calculated value exceeds the critical value, reject H0. 
 
 M-5.2.3.7  Because there is a difference in the average lead concentration among the 
seven wells, a multiple comparison test should be done to determine which wells are signifi-
cantly different. A multiple comparison test based on ranks is discussed in Conover (1980). 
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Table M-8 
Lead Concentrations for Example M-5.2.3 

Well Result Rank Well Result Rank 
6 0.978 1 5 3.100 29 
6 1.037 2 7 3.118 30 
3 1.061 4 5 3.144 31 
3 1.061 4 7 3.178 32 
3 1.061 4 1 3.215 33 
6 1.095 6 1 3.219 34 
6 1.109 7 1 3.235 35 
3 1.144 8 5 3.346 36 
3 1.227 9 1 3.395 37 
3 1.241 10 5 3.421 38 
3 1.270 11 5 3.434 39 
3 1.426 12.5 1 3.478 40 
6 1.426 12.5 1 3.586 41 
6 1.513 14 5 3.605 42 
6 1.530 15 5 3.627 43 
6 1.601 16 7 3.671 44 
2 2.588 17 7 3.689 45 
2 2.595 18 5 3.694 46 
2 2.610 19.5 7 3.922 47 
2 2.610 19.5 7 3.932 48 
2 2.625 21.5 4 4.057 49 
2 2.625 21.5 4 4.101 50 
2 2.639 23 4 4.103 51 
7 2.918 24 4 4.119 52 
1 3.011 25 4 4.159 53 
7 3.035 26 4 4.177 54 
1 3.068 27 4 4.214 55 
2 3.073 28 4 4.228 56 

 
M-6 Multiple Comparison Tests.  Multiple comparisons occur whenever more than one sta-
tistical test is performed with the same data. These comparisons can arise, for example, as a re-
sult of the need to test multiple down-gradient wells against a pool of up-gradient background 
data or to regularly test several indicator parameters for contamination. The multiple comparison 
tests described in this section may not be needed if a significant difference is not obtained from 
the ANOVA F-test. 
 
 M-6.1  Introduction.  Comparisons are usually written in terms of linear combinations of 
the population means, and are often referred to as “contrasts.” For example, we may want to 
know if the mean for population 1, 1μ , differs from the mean for population 2, 2μ . This contrast 
can be written as 21 μμ − . In general, a contrast is a linear combination  
 
 ∑= iia μθ  
 
where  
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 ∑ = 0ia .  
 
Beyond comparing pairs of means, a contrast to compare the mean of population 1 to the means 
of populations 2 and 3 can be written as 3212 μμμ −− . 
 
 M-6.1.1  The Type I error rate for multiple comparison tests can be viewed in two ways. 
Comparison-wise significance considers the probability of rejecting the hypothesis that only a 
single contrast equals zero ( 0: 10 =θH ) when it is actually true. Experiment-wise significance 
considers the probability of rejecting any of a set of m hypotheses on contrasts 
( mjH j ...,,1,0:0 ==θ ) when all of them are true. 
 
Table M-9 
Summary of Multiple Comparison Tests 

Test Purpose 
Dunnett’s Comparing treatment means to a control mean 
Fisher’s LSD Comparing all pairs of means 
Duncan’s multiple range Comparing all pairs of means 
Tukey’s Comparing all pairs of means 
Bonferroni’s Comparing any set of contrasts  
Scheffé’s Comparing any set of contrasts 

 
 M-6.1.2  Table M-9 summarizes the multiple comparison tests that will be covered in this 
document. The Fisher’s Least Significant Difference (LSD) test and Bonferroni’s test are multi-
ple comparison tests that are based on the Student’s t distribution, whereas the Tukey’s test and 
Duncan’s multiple range test are based on the Studentized range statistic. Scheffé’s multiple 
comparison test is used to achieve an experiment-wise false positive rate for all possible con-
trasts or linear combinations of means at the same time. All the multiple comparison tests pre-
sented rely on the assumption of normality. Assumptions of normality should have been verified 
during the ANOVA process, which is typically performed prior to these multiple comparison 
tests. More information on multiple comparison tests can be found in Mason et al. (1989) and 
Montgomery (1997). 
 
 M-6.1.3  There is no clear answer to the question of which multiple comparison tech-
nique should be used. For comparing all pairs of treatment means, Fisher’s LSD is the least con-
servative (most powerful) test for identifying differences between means (i.e., it rejects H0 most 
often) followed by Duncan’s Multiple Range, Tukey, and finally Sheffé. The relative conserva-
tism of the Bonferroni Test will depend on the number of groups. Montgomery (1997) recom-
mends Fisher’s LSD or Duncan’s multiple range test for comparing all treatment means as long 
as the ANOVA F-test is significant, based on Monte Carlo studies conducted by Carmer and 
Swanson (1973). Mason et al. (1989) recommend Fisher’s LSD to control the comparison-wise 
error rate and Tukey’s test to control the experiment-wise error rate for comparing all treatment 
means. When many comparisons need to be made, multiple range tests such as Duncan’s multi-
ple range test and Tukey’s test should be used as a compromise between the desired experiment-
wise error rate and an unacceptable comparison-wise error rate (Mason et al., 1989). Obviously, 
if one’s purpose is to compare treatment means to a control or if contrasts other than pairwise 
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comparisons of treatments are of interest, Dunnett’s, Bonferroni’s, or Scheffé’s test may be pre-
ferred. 
 
 M-6.2  Fisher’s Least-Significant Difference Test.  Fisher’s LSD test is an extension of 
the t-test for comparing all pairs of treatment means. Each pairwise comparison will have a Type 
I error rate (probability of declaring the pair of means different when they are not) of α . There-
fore, the experiment-wise error rate (the probability of declaring any pair of means different 
when they are not) will be larger than α . The disadvantage to the Fisher’s LSD test is that its 
experiment-wise error rate is not satisfactory for testing all possible pairs of group means when 
there are a moderate to large number of groups to be compared (Mason et al., 1989). Directions 
for Fisher’s LSD test (from Mason et al., 1989) are given in Paragraph M-6.2.1 and an example 
is presented in Paragraph M-6.2.2. 
 
 M-6.2.1  Directions for Fisher’s LSD Test.  Let K represent the total number of popula-
tions to be compared. Let Knnn ,,, 21 K  represent the sample sizes of each of the K sample popu-
lations. Let the values from each population be represented by jix ,  where i = 1, 2,…, K for the K 
groups and inj ,...,2,1=  for the observations at the ith group. Let %100)1( α−  represent the cho-
sen confidence level for the test. 
 
 M-6.2.1.1  Verify the assumptions of normality. 
 
 M-6.2.1.2  The means of two groups, ix  and kx , in an ANOVA are declared to be signifi-
cantly different if:  
 
 LSD>− ki xx   
 
where 
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 vE t , γ is the γ100th percentile for the Student’s t distribution with vE degrees of freedom (see Table 
B-23 in Appendix B). MSE and vE come from the ANOVA procedures previously defined. Note 
that for K groups, 2/)1( −KK differences ki xx −  need to be calculated. 
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 M-6.2.2  Example of Fisher’s LSD Test.  Mean manganese groundwater concentrations in 
seven wells were compared to one another using the ANOVA. The null hypothesis was rejected. 
The LSD test is subsequently applied below using the 95% level of confidence. 
 
 M-6.2.2.1  The table in Paragraph M-5.1.3 presents the data. All manganese concentra-
tions were detected so no proxy concentrations are needed to evaluate the data. 
 
 M-6.2.2.2  Assumptions of normality were verified for the log result during the ANOVA 
process. 
 

 

1/ 2

1 / 2,

1/ 2

0.975,49
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 M-6.2.2.3  Means that differ by more then 0.2584 would be considered statistically dif-
ferent with 95% confidence. Alternatively, confidence intervals for the difference in means can 
be calculated as LSD)( ±− ki xx . If zero is not in the confidence interval, the two population 
means are declared significantly different at the α  significance level. Table M-10 summarizes 
the results. Comparisons significant at the 0.05 level are indicated by ***. 
 
 M-6.2.2.4  Another way to visualize the conclusions is to list the means in order and 
identify those that are not significantly different. In Table M-11, means designated with the same 
“group” letter (A, B, C, etc.) are not significantly different at 05.0=α . 
 
 M-6.2.2.5  As Wells 69-2-02 and 69-2-08 are in LSD grouping A, the means for these 
wells are not statistically different. The preceding table indicates that the difference between the 
two means is 0.0758, which is less than LSD = 0.2584. 
 
 M-6.3  Bonferroni’s Test.  The Bonferroni’s test is designed to control the experiment-
wise error rate (the probability of declaring any two means different when they are not). The test 
uses the overall significance level divided by the number of selected comparisons as the com-
parison-wise significance level. Mason et al. (1989) warn that Bonferroni’s test should not be 
used when the number of comparisons becomes very large, because this results in an extremely 
conservative comparison-wise test. However, they do state that the experiment-wise error rate 
can be better controlled using Bonferroni’s test rather than the Fisher’s LSD test (where com-
parison-wise error is controlled). Also, note that Bonferroni’s test can be used to test any contrast 
of interest (Mason et al., 1989). Directions for Bonferroni’s Test (from Mason et al., 1989) are 
presented in Paragraph M-6.3.1 and an example is presented in Paragraph M-6.3.2. 
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Table M-10 
Results for Example M-6.2.2   

Well Comparison Difference Between Means ki xx −  95% Confidence Interval 
02 – 08 0.0758 (–0.1825, 0.3342) 

02 – 06A 0.3123 (0.0539, 0.5706)*** 
02 – 06B 1.1769 (0.9186, 1.4353)*** 
02 – 04 2.0452 (1.7868, 2.3036)*** 
02 – 07 3.4857 (3.2273, 3.7440)*** 
02 – 05 4.1861 (3.9277, 4.4444)*** 

08 – 06A 0.2365 (–0.0219, 0.4948) 
08 – 06B 1.1011 (0.8427, 1.3595)*** 
08 – 04 1.9694 (1.7110, 2.2277) *** 
08 – 07 3.4098 (3.1515, 3.6682)*** 
08 – 05 4.1103 (3.8519, 4.3686)*** 

06A – 06B 0.8646 (0.6063, 1.1230)*** 
06A – 04 1.7329 (1.4746, 1.9913)*** 
06A – 07 3.1734 (2.9150, 3.4317)*** 
06A – 05 3.8738 (3.6154, 4.1322)*** 
06B – 04 0.8683 (0.6099, 1.1266)*** 
06B – 07 2.3088 (2.0504, 2.5671)*** 
06B – 05 3.0092 (2.7508, 3.2675)*** 
04 – 07 1.4405 (1.1821, 1.6988)*** 
04 – 05 2.1409 (1.8825, 2.3992)*** 
07 – 05 0.7004 (0.4420, 0.9588)*** 

 

Table M-11 
List of the Means in Order for Example M-6.2.2 

Well  Mean n LSD Groupings  
69-2-02 –0.8315 8 A 
69-2-08 –0.9073 8 B  A 

69-2-06A –1.1438 8 B 
69-2-06B –2.0084 8 C 
69-2-04 –2.8767 8 D 
69-2-07 –4.3172 8 E 
69-2-05 –5.0176 8 F 

 
 M-6.3.1  Directions for Bonferroni’s Test.  Let K represent the total number of popula-
tions to be compared. Let Knnn ,,, 21 K  represent the sample sizes of each of the K sample popu-
lations. Let the values from each population be represented by jix ,  where i = 1, 2,…, K for the K 
groups and inj ,...,2,1= for the observations in the ith group. Let %100)1( α−  represent the se-
lected confidence level for the test. 
 
 M-6.3.1.1  Verify the assumptions of normality.  
 
 M-6.3.1.2  Let  
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 iia μθ ∑=   

 
represent one of m linear combinations of the means, kμ , for which the hypothesis 0:0 =θH  
vs. 0: ≠θAH  is being tested. 
 
 M-6.3.1.3  Reject H0 if  
 
 ∑= ii xaθ   
 
exceeds 
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t νγ , is the 100γ th percentile for the Student’s t distribution with vE degrees of freedom (see Table 
B-23 in Appendix B), and m is the number of comparisons. For K means (groups), there are  
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2

1−
=

KKm  

 
possible comparisons. MSE and vE are determined from the ANOVA procedures previously de-
fined. 
 
 M-6.3.2  Example of Bonferroni’s Test.  Suppose manganese groundwater concentrations 
are going to be compared among the seven different wells at Site A using Bonferroni’s test with 
95% level of confidence. 
 
 M-6.3.2.1  Table M-6 presents the data. All manganese concentrations were detected, so 
no proxy concentrations are needed to evaluate the data. 
 
 M-6.3.2.2 The assumptions of normality were verified during the ANOVA process. The 
contrasts to make pairwise comparisons of all 7 means are the 21 differences (where 1±=ia ): 
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0426902269 −−−− − μμ  A0626904269 −−−− − μμ  0826905269 −−−− − μμ  

0526902269 −−−− − μμ  B0626904269 −−−− − μμ  BA 0626906269 −−−− − μμ  

A0626902269 −−−− − μμ  0726904269 −−−− − μμ  0726906269 −−−− − μμ A  

B0626902269 −−−− − μμ  0826904269 −−−− − μμ  0826906269 −−−− − μμ A  

0726902269 −−−− − μμ  A0626905269 −−−− − μμ  0726906269 −−−− − μμ B  

0826902269 −−−− − μμ  B0626905269 −−−− − μμ  0826906269 −−−− − μμ B  

0526904269 −−−− − μμ  0726905269 −−−− − μμ  0826907269 −−−− − μμ  
 

[ ] 412.0128.020.3
8
1

8
1066.0/MSEBSD
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Means that differ by more than 0.412 would be considered statistically different with 95% confi-
dence. Alternatively, confidence intervals for the difference in means can be calculated as 

BSD±− ki xx . If zero is not covered by the confidence interval, the two population means are 
declared significantly different at the α  significance level.  
 
 M-6.3.2.3  In Table M-12, means with the same letter are not significantly different at 

05.0=α . For example, the mean for 69-2-02 does not differ from the mean for 69-2-08 by more 
than 0.412, so we accept  
 
 0: 08269022690 =− −−−− μμH .  
 
Table M-12 
Means with the Same Letter are not Significantly Different at 05.0=α  in Example M-6.3.2 

Well Mean n Bonferroni Grouping 
69-2-02 –0.8315 8 A 
69-2-08 –0.9073 8 A 

69-2-06A –1.1438 8 A 
69-2-06B –2.0084 8 B 
69-2-04 –2.8767 8 C 
69-2-07 –4.3172 8 D 
69-2-05 –5.0176 8 E 

 
On the other hand, we can reject 
 
 0: 05269022690 =− −−−− μμH   
 
because the two observed means differ by more than 0.412. Notice that the more conservative 
Bonferroni test does not reject  
 
 0: 06269022690 =− −−−− AH μμ   



EM 1110-1-4014 
15 Jan 07 
 

M-41 

 
with 95% confidence while Fisher’s LSD test did. 
 
 M-6.4  Tukey’s Test.  Tukey’s test is designed to control the experiment-wise chance of a 
Type I error (declaring any two population means different when they are not) at α  assuming 
equal sample sizes (Mason et al., 1989). Because of this, it is less powerful than Fisher’s LSD or 
Duncan’s multiple range test (Montgomery, 1997). Directions and an example for Tukey’s Test 
(from Mason et al., 1989) are given in Paragraphs M-6.4.1 and M-6.4.2, respectively. 
 
 M-6.4.1  Directions for Tukey’s Test.  Let K represent the total number of populations to 
be compared. Let Knnn ,,, 21 K  represent the sample sizes of each of the K sample populations. 
Let the values from each population be represented by jix , , where i = 1, 2,…, K for the K groups 
and inj ,...,2,1=  for the observations at the ith group. Let %100)1( α−  be the confidence level. 
 
 M-6.4.1.1  Verify the assumptions of normality. Two averages, ix  and rx , are based on 

in and rn samples, respectively, where 
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Two means are significantly different if TSD|| >− ri xx  where: 
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 M-6.4.1.2  The quantity 

Evkq ,,α is the Studentized range statistic in Table B-22 of Appen-
dix B, where k is the number of means being compared (typically equal to the number of groups 
K); MSE and vE are from the ANOVA procedure previously defined, and α  represents the de-
sired significance level. 
 
 M-6.4.2  Example of Tukey’s Test.  Manganese groundwater concentrations are compared 
among the seven different wells at Site A using Tukey’s Test with 95% level of confidence. 
 
 M-6.4.2.1  Table M-6 presents the data. All manganese concentrations were detected so 
no proxy concentrations are needed to evaluate the data. Assumptions of normality were verified 
during the ANOVA process. 
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 M-6.4.2.2  Means that differ by more then 0.3952 would be considered statistically dif-
ferent with 95% confidence. Alternatively, confidence intervals for the difference in means can 
be calculated for the difference of any two means as TSD±− ri xx . If zero is not in the confi-
dence interval, the two population means are significantly different at the α  significance level. 
Table M-13 summarizes the results. Comparisons significant at 0.05=α  are indicated by ***. 
 
 M-6.4.2.3  In Table M-14, means with the same letter are not significantly different at 

0.05=α . 
 
Table M-13 
Results from Example M-6.4.2 

Well Comparison 
Difference Between 

Means 
Simultaneous 95% 

Confidence Intervals 
69-2-02–69-2-08 0.0758 (–0.3194, 0.4710) 

69-2-02–69-2-06A 0.3123 (–0.0829, 0.7075 
69-2-02–69-2-06B 1.1769 (0.7817, 1.5721)*** 
69-2-02–69-2-04 2.0452 (1.6500, 2.4404) *** 
69-2-02–69-2-07 3.4857 (3.0905, 3.8809)*** 
69-2-02–69-2-05 4.1861 (3.7909, 4.5813)*** 

69-2-08–69-2-06A 0.2365 (–0.1587, 0.6317) 
69-2-08–69-2-06B 1.1011 (0.7059, 1.4963)*** 
69-2-08–69-2-04 1.9694 (1.5742, 2.3646)*** 
69-2-08–69-2-07 3.4098 (3.0146, 3.8051)*** 
69-2-08–69-2-05 4.1103 (3.7150, 4.5055)*** 

69-2-06A–69-2-06B 0.8646 (0.4694, 1.2598)*** 
69-2-06A–69-2-04 1.7329 (1.3377, 2.1281)*** 
69-2-06A–69-2-07 3.1734 (2.7782, 3.5686)*** 
69-2-06A–69-2-05 3.8738 (3.4786, 4.2690)*** 
69-2-6B–69-2-04 0.8683 (0.4731, 1.2635)*** 
69-2-06B–69-2-07 2.3088 (1.9135, 2.7040)*** 
69-2-06B–69-2-05 3.0092 (2.6139, 3.4044)*** 
69-2-04–69-2-07 1.4405 (1.0453, 1.8357)*** 
69-2-04–69-2-05 2.1409 (1.7457, 2.5361)*** 
69-2-07–69-2-05 0.7004 (0.3052, 1.0956)*** 

 
 
Table M-14 
Means with the Same Letter are not Significantly Different at α = 0.05  

Tukey Grouping Mean N Well 
A –0.8315 8 69-2-02 
A –0.9073 8 69-2-08 
A –1.1438 8 69-2-06A 
B –2.0084 8 69-2-06B 
C –2.8767 8 69-2-04 
D –4.3172 8 69-2-07 
E –5.0176 8 69-2-05 
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 M-6.5  Duncan’s Multiple Range Test.  Duncan’s multiple range test is used to test for 
differences in all pairs of means. Considering the ordered list of means, this procedure provides 
an experiment-wise error rate of  
 
 ( ) 111 −−− pα   
 
when the pair of means are p steps apart in the ordered list (Montgomery, 1997). Thus, the ex-
periment-wise probability of a Type I error depends on how far apart in the ordered list the two 
means lie (Mason et al., 1989). Duncan’s multiple range test is similar to Tukey’s test except that 
it has greater power to detect differences but does not control the experiment-wise error rate as 
well. Directions for Duncan’s multiple range test (from Mason et al., 1989, and Montgomery, 
1997) are presented in Paragraph M-6.5.1 followed by an example in Paragraph M-6.5.2. 
 
 M-6.5.1  Directions for Duncan’s Multiple Range Test.  Let K represent the total number 
of populations to be compared. Let n  represent the sample sizes of each of the K sample popula-
tions. Let the values from each population be represented by jix ,  where i = 1, 2,…, K  and j = 1, 
2,…, n for the observations in the ith group (population).  
 
 M-6.5.1.1  Verify the assumptions of normality. The means  
 

 ∑
=

=
in

j
jii x

n
x

1
,

1
 

 
are sorted from smallest to largest. The two extreme means are compared first. The largest and 
smallest of p = K averages, ax and bx (each based on a sample size of n), are significantly differ-
ent if pba Rxx >−  where  
 

 
2/1

,,
MSE

⎟
⎠
⎞

⎜
⎝
⎛=

n
qR

Evpp α . 

 
 M-6.5.1.2  The quantity 
 
 

Evpq ,,α  
 
is the Studentized range critical value (see Table B-6 of Appendix B). MSE and vE are from the 
ANOVA procedure previously defined, and α represents the comparison-wise error rate. The ex-
periment-wise significance level for comparing the extremes of p means is  
 
 ( ) 111 −−−= p

p αα . 
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 M-6.5.1.2.1  If the smallest and largest means are not significantly different, then no 
more comparisons are made and all other comparisons are declared not significantly different at 
the ( ) %1001 pα−  level of confidence.  
 
 M-6.5.1.2.2  If the smallest and largest averages are significantly different, then two com-
parisons are made where p = k – 1: one for the second smallest and the largest averages, and one 
for the smallest and the second largest averages. 
 
 M-6.5.1.2.3  For the two comparisons, if neither of these tests is significantly different, 
then no more comparisons are performed and only two extreme means ( ax and bx ) are concluded 
to be significantly different. 
 
 M-6.5.1.2.4  If one or both of these tests are statistically significant, testing should con-
tinue with groups of averages lying within the two extremes that have been declared significantly 
different.  
 
 M-6.5.1.3  Testing continues until no further significant differences are obtained. 
 
 M-6.5.2  Example of Duncan’s Multiple Range Test.  Suppose manganese groundwater 
concentrations are going to be compared among the seven different wells at Site A using Dun-
can’s multiple range test with 95% level of confidence. 
 
 M-6.5.2.1  Table M-6  presents the data. All manganese concentrations were detected so 
no proxy concentrations are needed to evaluate the data. 
 
 M-6.5.2.2  The assumptions of normality were verified during the ANOVA process. 
 
 M-6.5.2.3  There are seven groups to compare so we begin by comparing the one with the 
smallest mean to the one with the largest mean. 
 
 ( ) ( ) 296.00908.0255.38/066.0/MSE 2/1

49,7,05.0
2/1

,7,7 =×=== qnqR
Evα . 

 
Considering 
 
 296.0186.4)0176.5(8315.00526902269 >=−−−=− −−−− xx  
 
we can conclude that the population means for these two wells differ at the  
 
 26.0)05.01(1)1(1 171 =−−=−− −−pα   
 
significance level. As the two extreme means were significantly different, we now test means 
that are 6 levels apart. 
 
 ( ) ( ) 292.00908.0212.38/066.0/MSE 2/1

49,6,05.0
2/1

,6,6 =×=== qnqR
Evα . 
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Considering  
 
 292.0486.3)3172.4(8315.00726902269 >=−−−=− −−−− xx  
 
and 
 
 292.0110.4)0176.5(9073.00526908269 >=−−−=− −−−− xx  
 
we can conclude that the population means for these two comparisons differ at the  
 
 23.0)05.01(1)1(1 161 =−−=−− −−pα   
 
significance level. 
 
 M-6.5.2.4  Because means 6 levels apart are significantly different, continue the process 
with means 5 levels apart and so on. The final results are summarized in the Table M-15, where 
means with the same letter are not significantly different at an experiment-wise significance level 
of α = 0.05. 
 

Table M-15 
Means with the same Letter are not Significantly Different at Significance of α = 0.05  

Duncan Grouping Mean N Well 
69-2-02 –0.8315 8 A  
69-2-08 –0.9073 8 B  A  

69-2-06A  –1.1438 8 B 
69-2-06B  –2.0084 8 C 
69-2-04 –2.8767 8 D 
69-2-07 –4.3172 8 E 
69-2-05 –5.0176 8 F 

 
 M-6.6  Dunnett’s Test for Simple Random and Systematic Samples. Dunnett’s test is used 
to test the difference between sample or “treatment” means from different populations against a 
control population. Dunnett’s method is the same as the standard two-sample t-test (Paragraph 
M-2), except for the use of a larger pooled estimate of variance and the need for special t type ta-
bles (Table B-26 of Appendix B). The experiment-wise significance level for all comparisons 
will be α (Montgomery, 1997). Directions for the use of Dunnett’s method for a simple random 
sample or a systematic random sample are presented in Paragraph M-6.6.1 and followed by an 
example in Paragraph M-6.6.2. 
 
 M-6.6.1  Directions for Dunnett’s Test for Simple Random and Systematic Samples.  Let 
K represent the total number of populations to be compared so there are (K – 1) sample popula-
tions and a single control population. Let 121 ,,, −Knnn K  represent the sample sizes of each of the 
(K – 1) sample populations and let m represent the sample size of the control population.  
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 M-6.6.1.1  H0:  0≤− Ci μμ  (no difference between the sample means and the control 
mean).  
 
 M-6.6.1.2  HA: 0>− Ci μμ  for i = 1, 2,…, K – 1 where iμ  represents the mean of the ith 
sample population and Cμ  represents the mean of the control population. 
 
 M-6.6.1.3  Let α represent the chosen significance level for the test. 
 
 M-6.6.1.4  Verify the assumptions of normality. For each sample population, make sure 
that 2/5.0 << inm . If not, Dunnett’s Test should not be used. 
 
 M-6.6.1.5  Calculate the sample mean, ix , and the variance, 2

is , for each of the K – 1 
populations and the control ( CKi ,1,,2,1 −= K ).  
 
 M-6.6.1.6  Calculate the pooled standard deviation: 
 

 
)1()1()1(
)1()1()1(

11

2
11

2
11

2

−++−+−
−++−+−

=
−

−−

K

KKC
p nnm

snsnsm
s

K

K
 . 

 
For each of the K – 1 sample populations, compute  
 

 
Cip

Ci
i nns

xx
t

11 +

−
=  . 

 
 M-6.6.1.7  Use Table B-26 of Appendix B to determine the critical value, 

Evt ,1 α− , where 
the degrees of freedom vE = )1()1()1( 11 −++−+− −Knnm K . Compare ti to 

Evt ,1 α−  for each of 
the K – 1 sample populations.  
 
 M-6.6.1.7.1  If ti > 

Evt ,1 α−  for any sample population, then reject 0H and conclude that the 
mean of the sample population exceeds the mean of the control population.  
 
 M-6.6.1.7.2  Otherwise, conclude that the mean of the sample population does not exceed 
the mean of the control population. 
 
 M-6.6.2  Example of Dunnett’s Test for Simple Random and Systematic Samples.  Sup-
pose manganese (Mn) groundwater concentrations at six wells are going to be compared to a 
background well at Site A using the following test with 95% level of confidence. 
 
 M-6.6.2.1  H0: 0≤− Ci μμ  (no difference between the sample means and the control 
mean). 
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 M-6.6.2.2  HA: 0>− Ci μμ  for i = 1, 2,…, K – 1 where iμ represents the mean of the ith 
sample population and Cμ  represents the mean of the control population.  
 
 M-6.6.2.3  All Mn concentrations were detected so no proxy concentrations are needed to 
evaluate the data. 
 
 M-6.6.2.4  The assumptions of normality were verified during the ANOVA process. Be-
cause the sample population for each well is equal to 8, we only have to calculate m/ni once. As 
m/ni = 8/8 = 1 is between 0.5 and 2, it is reasonable to apply Dunnett’s test. 
 
Well 69-2-02 69-2-04 69-2-08 69-2-05 69-2-06B 69-2-06A Bkgd 
Mean –0.832 –2.877 –0.907 –5.018 –2.008 –1.144 –4.317 
Variance 0.064 0.041 0.091 0.033 0.143 0.011 0.080 
 

 
)1()1()1(
)1()1()1(

11

2
11

2
11

2

−++−+−
−++−+−

=
−

−−

K

KKc
p nnm

snsnsms
K

K   

 

 
49
240.3

7777777
)011.0143.0033.0091.0041.0064.0080.0(7
=

++++++
++++++

= = 0.2571 

 

 ( )
1286.0

317.4
81812571.0

317.4
11

+
=

+
−−

=
+

−
= ii

Cip

Ci
i

xx
nns

xxt  

 
so for each sample well 
 

Sample Well, i ti 
69-2-02 27.11 
69-2-04 11.20 
69-2-08 26.52 
69-2-05 –5.45 

69-2-06B 17.96 
69-2-06A 24.68 

 
 M-6.6.2.5  The degrees of freedom are 49)18()18()18( =−++−+− K . So, using Table 
B-26 of Appendix B with 49 degrees of freedom, the critical value 49,95.0t  = 2.32.  
 
 M-6.6.2.5  For all wells except Well 69-2-05, ti > t0.95, 49. We then reject H0 and conclude 
that the means of the sample well populations exceed the mean of the control well population, 
except for Well 69-2-05. 
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Table M-16 
Data for Example M-6.6.2 

Well Location Result Log Result Well Location Result Log Result 
69-2-02 0.432 –0.839 69-2-06A 0.294 –1.224 
69-2-02 0.44 –0.821 69-2-06A 0.301 –1.201 
69-2-02 0.513 –0.667 69-2-06A 0.379 –0.970 
69-2-02 0.704 –0.351 69-2-06A 0.352 –1.044 
69-2-02 0.327 –1.118 69-2-06A 0.346 –1.061 
69-2-02 0.316 –1.152 69-2-06B 0.13 –2.040 
69-2-02 0.454 –0.790 69-2-06B 0.184 –1.693 
69-2-02 0.401 –0.914 69-2-06B 0.209 –1.565 
69-2-04 0.0504 –2.988 69-2-06B 0.2 –1.609 
69-2-04 0.0502 –2.992 69-2-06B 0.0739 –2.605 
69-2-04 0.054 –2.919 69-2-06B 0.0876 –2.435 
69-2-04 0.0523 –2.951 69-2-06B 0.126 –2.071 
69-2-04 0.0923 –2.383 69-2-06B 0.129 –2.048 
69-2-04 0.0556 –2.890 bkgd 0.0137 –4.290 
69-2-04 0.0534 –2.930 bkgd 0.019 –3.963 
69-2-04 0.0517 –2.962 bkgd 0.0163 –4.117 
69-2-05 0.00684 –4.985 bkgd 0.0195 –3.937 
69-2-05 0.00639 –5.053 bkgd 0.0112 –4.492 
69-2-05 0.00631 –5.066 bkgd 0.0112 –4.492 
69-2-05 0.00813 –4.812 bkgd 0.0102 –4.585 
69-2-05 0.00747 –4.897 bkgd 0.00946 –4.661 
69-2-05 0.00679 –4.992 69-2-08 0.563 –0.574 
69-2-05 0.00731 –4.919 69-2-08 0.512 –0.669 
69-2-05 0.00444 –5.417 69-2-08 0.475 –0.744 

69-2-06A 0.3 –1.204 69-2-08 0.546 –0.605 
69-2-06A 0.286 –1.252 69-2-08 0.276 –1.287 
69-2-06A 0.303 –1.194 69-2-08 0.383 –0.960 

   69-2-08 0.33 –1.109 
   69-2-08 0.27 –1.309 

 
 M-6.7  Scheffé’s Test.  Scheffé’s test is designed to allow the comparison of any set of 
contrasts while controlling the experiment-wise Type I error rate (the probability of declaring 
any contrast different from 0 when it is not) to be no more then α  (Montgomery, 1997). When 
the experimenter is only interested in comparing pairs of treatment means, Scheffé’s test is not 
the most sensitive. Directions for Scheffé’s Test and an example are presented in Paragraphs M-
6.7.1 and M-6.7.2, respectively. 
 
 M-6.7.1  Directions for Scheffé’s Test.  Let K represent the total number of populations to 
be compared. Let Knnn ,,, 21 K  represent the sample sizes of each of the K sample populations. 
Let  
 

 ∑
=

=
K

i
inN

1
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be the overall sample size. Let the values from each population be represented by jix ,  where i = 
1, 2,…, K for the K groups and inj ...,,2,1=  for the observations in the ith group. Let 

%100)1( α−  be the confidence level for the test. 
 
 M-6.7.1.1  Verify the assumptions of normality. Let  
 

 iia μθ ∑=   
 
represent one of m linear combinations of the means iu being tested for 0:0 =θH  vs. 0: ≠θAH .  
 
 M-6.7.1.2  Reject H0 if ∑= ii xaθ  exceeds the critical value  
 

 ( ) KNK

K

i
ii FKnaMSES −−−

=

−= ∑ ,1,1
1

2 )1(/ αα  

 
where in is the number of observations in the ith group of  
 

 ∑
=

=
in

j
ji

i
i x

n
x

1
,

1  

 
and  
 
 KNKF −−− ,1,1 α   
 
is the %100)1( α−  percentile for the F distribution with K – 1 numerator degrees of freedom and  
N – K denominator degrees of freedom (see Table B-7 in Appendix B). 
 
 M-6.7.2  Example of Scheffé’s Test.  Suppose manganese concentrations in groundwater 
are going to be compared in six different sampling wells and a background well using Scheffé’s 
test with a 95% level of confidence. 
 
 M-6.7.2.1  Table M-16 presents the data. All manganese concentrations were detected, so 
no proxy concentrations are needed to evaluate the data. The assumptions of normality were 
verified during the ANOVA process.  
 
 M-6.7.2.2  Suppose two contrasts are of interest: comparing the background well to all of 
the other wells combined and comparing well 69-2-06A to well 69-2-06B. These two contrasts 
can be written: 
 
 0826906269062690526904269022691 6 −−−−−−−−−−−− −−−−−−= μμμμμμμθ BAbkgd  
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 BA 06269062692 −−−− −= μμθ  . 
 
The contrast estimates are: 
 
 0826906269062690526904269022691 6ˆ

−−−−−−−−−−−− −−−−−−= xxxxxxx BAbkgdθ  
 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

1177.13
907.0008.2144.1018.5877.2832.0317.46

−=
−−−−−−−−−−−−−=

 

 
 ( ) 8646.0008.2144.1ˆ

06269062692 =−−−=−= −−−− BA xxθ . 
 
The critical values are: 
 

 

( )

( )

1841.229.26589.0
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8
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8
1
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1

8
1

8
1
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36066.0
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α α− − −
=

= × −

⎛ ⎞= × + × −⎜ ⎟
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= × × =

∑

 

 
 M-6.7.2.3  Because the absolute value of each contrast exceeds the relevant critical value, 
we reject 0: 10 =θH  and 0: 20 =θH  with 95% confidence. In other words, the average meas-
urement at the background well is significantly different from the average measurement at the 
other six wells, and the average measurement at well 69-2-06A differs significantly from the av-
erage at well 69-2-06B.  
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APPENDIX N  
Hypothesis Testing—Tests of Dispersion 

 
N-1 Introduction.  Many statistical tests make assumptions on the dispersion of data, as 
measured by variance. This Appendix considers some of the most commonly used statistical tests 
for equality of variance, a key assumption for the validity of a two-sample t-test and analysis of 
variance (ANOVA). More information on hypothesis tests on the variance can be found in EPA 
600/R-96/084, QA/G-9. 
 
N-2 F-Test for the Equality of Two Variances.  An F-test may be used to see whether the 
true underlying variances of two populations are equal. Usually the F-test is employed as a 
preliminary test, before conducting the two-sample t-test for the equality of two means. The 
assumptions underlying the F-test are that the two samples are independent random samples 
from two underlying normal populations. The F-test for equality of variances is highly 
sensitive to departures from normality. (In the case of non-normality, Levene’s test is 
recommended, Paragraph N-4.) Directions for implementing an F-test are given in Paragraph 
N-2.1, followed by an example in Paragraph N-2.2.  
 
 N-2.1  Directions for an F-Test Comparing Two Variances.  Let x1, x2,..., xm represent the 
m data points from population 1 and y1, y2,..., yn represent n data points from population 2. To 
perform an F-test, proceed as follows. 
 
 N-2.1.1  Test the null hypothesis of equal variances: 
 
 2222

0 :,: yxAyx HH σσσσ ≠=  . 
 
 N-2.1.2  Verify the assumption of normality using one of the methods described in 
Appendix F. 
 
 N-2.1.3  Calculate the sample variance, 2

xs (for the sX , ) and 2
ys (for the sY , ) (Appendix 

D). 
 
 N-2.1.4  Calculate the variance ratios, 22 / yxx ssf =  and 22 / xyy ssf = .  
 
 N-2.1.6  Let f equal the larger of these two values. 
 
 N-2.1.6.1  If xff = , then let 1−= mk  and 1−= nq . 
 
 N-2.1.6.2  If yff = , then let 1−= nk  and 1−= mq . 
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 N-2.1.7  Using Table B-7 of Appendix B of the F-distribution, we find the critical value,  
 
 qkFU ,,2/1 α−=  
 
where k denotes the degrees of freedom in the numerator and q the degrees of freedom in the 
denominator for the ratio f.  
 
 N-2.1.7.1  If Uf > , conclude that the variances of the two populations are not the same.  
 
 N-2.1.7.2  If Uf ≤ , there is insufficient evidence to conclude the variances are different. 
 
 N-2.2  Example of an F-Test Comparing Two Variances.  Consider the case where nickel 
concentrations in surface soil are compared between Site A and Background. The null and 
alternative hypotheses are: 
 
 2222

0 :,: yxAyx HH σσσσ ≠=  . 
 
 N-2.2.1  Nickel in surface soils at Site A (X) was detected at following concentrations (m 
= 6): 2.665, 3.610, 5.470, 7.150, 8.340, 7.960 mg/kg.  
 
 N-2.2.2  Nickel in surface background (bkgd) soils (Y) was detected at the following 
concentrations (n =10): 5.140, 7.460, 5.990, 3.360, 3.190, 2.870, 5.950, 1.720, 4.770, 5.605 
mg/kg. 
 
 N-2.2.3  Verify the assumption of normality. For this case, the Shapiro-Wilk test is used. 
 
 N-2.2.4  Calculate the sample variance, 2

xs  (for the sX , ) and 2
ys  (for the sY , ). 

 
 Sample Mean Sample Variance Sample Size 

Site data  5.87 5.53 6 
Background data 4.61 3.12 10 

 
 N-2.2.5  Calculate the variance ratios: 
 

 77.1
12.3
53.5/ 22 === yxx ssf   

 
and 
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 56.0
53.5
12.3/ 22 === xyy ssf . 

 
 N-2.2.6  Therefore .77.1=f  
 
 N-2.2.7  Because xff = , 516 =−=k  and 9110 =−=q . 
 

484.49,5,975.0,,2/1 === − fFU qkα . 
 
 N-2.2.8  Because )484.477.1( ≤≤Uf , there is insufficient evidence to conclude the 
variances are different. 
 
N-3 Bartlett’s Test for the Equality of Two or More Variances.  Bartlett’s test, which is 
essentially a generalization of the F-test, is a way of testing whether two or more population 
variances of normal distributions are equal. In the case of only two variances, Bartlett’s test is 
equivalent to the F-test. Directions for Bartlett’s test are given in Paragraph N-3.1, followed by 
an example in Paragraph N-3.1. Like the F-test it is sensitive to deviations from normality. 
 
 N-3.1  Directions for Bartlett’s Test for Two or More Variances.  Let K represent the 
total number of populations to be compared. Let Knnn ,,, 21 K  represent the sample sizes of each 
of the K sample populations. Let N represent the total number of samples, knnnN ++= ....21 . 
Let the values from each population be represented by jix , , where Ki ,,2,1 K=  for the K groups 
and inj ,,2,1 K=  for the observations in the ith group.  
 
 N-3.1.1  22

2
2
10 : KH σσσ === L  (no difference among the population variances). 

 
 N-3.1.2  HA : at least one variance, 2

iσ , is different from one or more of the other 
variances. 
 
 N-3.1.3  For example, consider two wells, where four samples have been taken from Well 
1 and three samples have been taken from Well 2. In this case, ,3,4,2 21 === nnK  and 

.734 =+=N  
 
 N-3.1.4  Verify the assumption of normality using one of the methods described in 
Appendix F. For each of the K groups, calculate the sample variances, 2

is (see Appendix D). 
 
 N-3.1.5  Compute the pooled variance using the K groups:  
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1

2 )1(
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1
i

K

i
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KN
s −

−
= ∑

=

 . 

 
 N-3.1.6  Compute the test statistic (TS): 
 

 2 2

1
( )Ln( ) ( 1)Ln( )

K

p i i
i

TS N K s n s
=

= − − −∑ , where Ln is the natural logarithm. 

 
 N-3.1.7  Using a chi-square table (Table B-2 of Appendix B), find the critical value of the 
chi-squared distribution, 2

,1 ναχ − , with 1−= Kν  degrees of freedom and the %100)1( α−  level of 
confidence. For example, for a level of confidence of 95% (significance level α = 0.05) and ν = 
5, 2

5,95.0χ  = 11.1. 
 
 N-3.1.7.1  If 2

,1 ναχ −>TS , reject H0 (conclude that the variances are not all equal) at the 
%100)1( α− level of confidence. 

 
 N-3.1.7.2  If 2

,1 ναχ −≤TS , there is insufficient evidence to reject H0. 
 
 N-3.2  Example of Bartlett’s Test for Two or More Variables.  Using chromium 
concentrations in subsurface site soil, the data are: 2.95, 5.17, 4.80, 4.53, 4.01, 5.91, 3.96, 4.81, 
5.27, 5.99, 4.60, 5.51, 4.72, 3.56, 4.22, 3.91, 5.81, 4.48, 5.10, 4.94, 4.76, 4.62, 4.72, 4.73, 3.21, 
4.14, 4.85, 4.25, 5.09, 3.68, 5.12, 6.60, 6.19, 3.15, 4.11, 2.80 mg/kg. 
 
 N-3.2.1  The chromium concentrations in subsurface background soil are: 4.60, 5.29, 
4.26, 5.28, 4.53, 5.74, 5.86, 3.84 mg/kg. 
 
 N-3.2.2  Verify the assumption of normality. For this case, the Shapiro-Wilk test is used.  
 
 N-3.2.3  Let N represent the total number of samples. As the site data has 361 =n  
samples and the background data has 82 =n samples, 44=N  and 2=K . 
 
 N-3.2.4  For each of the K groups, calculate the sample variances, 2

is : 2
1s = 0.806 (site 

variance) and 2
2s = 0.526 (background variance). 

 
 N-3.2.5  Compute the pooled variance:  
 

 2

1

2 )1(
)(

1
i

K

i
ip sn

KN
s −

−
= ∑

−
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 ( )

[ ]

2 2
1 1 2 2

1 ( 1) ( 1)
44 2
1 (36 1)0.806 (8 1)0.526 0.7593 .
42

n s n s⎡ ⎤= − + −⎣ ⎦−

= − + − =

 

 
 N-3.2.6  Compute the test statistic TS:  
 

 2 2

1
( ) Ln( ) ( 1) Ln( )

K

p i i
i

TS N K s n s
=

= − − −∑   

  [ ](44 2) Ln(0.7593) (36 1) Ln(0.806) (8 1) Ln(0.526) 0.4802= − − − + − =  . 
 
 N-3.2.7  Using a chi-squared table (Table B-2 of Appendix B), find the critical value, 

2
,1 ναχ − . In this case, with a significance level of 5% and 1 degree of freedom, 2

1,95.0χ = 3.841. As 
841.34802.0 ≤=TS , there is insufficient evidence to conclude the variances are different at the 

05.0=α  significance level. 
 
N-4 Levene’s Test for the Equality of Two or More Variances.  Levene’s test is a non-
parameter alternative to Bartlett’s test for homogeneity of variance (testing for differences 
among the dispersions of several groups). Levene’s test is less sensitive to departures from 
normality than Bartlett’s test and has greater power than Bartlett’s for non-normal data. In 
addition, Levene’s test has power nearly as great as Bartlett’s test for normally distributed data. 
However, Levene’s test is more difficult to apply than Bartlett’s test because it involves applying 
an ANOVA to the absolute deviations from the group means. Directions for Levene’s test are 
given in Paragraph N-4.1, followed by an example in Paragraph N-4.2. 
 
 N-4.1  Directions for Levene’s Test for the Equality of Two or More Variances.  Let K 
represent the total number of populations to be compared. Let Knnn ,,, 21 K  represent the sample 
sizes of each of the K sample populations. Let N represent the total number of samples, 

knnnN ++= ....21 . Let the values from each population be represented by jix ,  where 
Ki ,,2,1 K=  for the K groups and inj ,,2,1 K=  for the observations in the ith group.  

 
 N-4.1.1  22

2
2
10 : KH σσσ === L  (no difference among the population variances). 

 
 N-4.1.2  HA : at least one variance, 2

iσ , is different from one or more of the other 
variances. 
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 N-4.1.3  For example, consider two wells where four samples have been taken from well 
1 and three samples have been taken from well 2. In this case, ,3,4,2 21 === nnK  and 

.734 =+=N   
 
 N-4.1.4  Verify the assumption of normality using one of the methods described in 
Appendix F. For each of the K groups, calculate the group mean, ix : 
 

 ∑
=

=
1

1
,1

1
1

1 n

j
jx

n
x ,  ∑

=

=
2

1
,2

2
2

1 n

j
jx

n
x , …. ,  ∑

=

=
Kn

j
jK

K
K x

n
x

1
,

1 . 

 
 N-4.1.5  Compute the absolute residuals  
 
 ijiji xxz −= ,,   
 
where jix ,  represents the jth value of the ith group. For each of the K groups, calculate the means, 

iz  ,of these residuals:  
 

 ∑
=

=
2

1
,1

1
1

1 n

j
jz

n
z ,  ∑

=

=
2

1
,2

2
2

1 n

j
jz

n
z ,….,  ∑

=

=
Kn

j
jK

K
K z

n
z

1
,

1 . 

 
 N-4.1.6  Calculate the overall mean residual: 
 

 i

K

i
i

K

i

n

j
ji zn

n
z

n
z

i

∑∑∑
== =

==
11 1

,
11 . 

 
 N-4.1.7  Compute the following sums of squares for the absolute residuals: 
 

 2 2
,

1

inK

TOTAL i j
i l j

SS z n z
= =

= −∑∑  

 

 
2

2
K

i
GROUPS

i l i

zSS n z
n=

= −∑  

 
 GROUPSTOTALERROR SSSSSS −= . 
 
 N-4.1.8  Compute  
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)/(
)1/(

KNSS
KSS

f
ERROR

GROUPS

−
−

=  . 

 
 N-4.1.9  Using Table B-7 of Appendix B, find KNkF −−− ,1,1 α , the critical value of the F-
distribution with (K – 1) numerator degrees of freedom, )( KN −  denominator degrees of 
freedom, and the desired level of significance, α . For example, if 05.0=α , the numerator 
degrees of freedom are 5, and the denominator degrees of freedom are 18, then using Table B-7, 
we find that 77.218,5,95.0 =F .  
 
 N-4.1.10  If f > F, reject the assumption of equal variances. 
 
 N-4.2  Example of Levene’s Test for the Equality of Two or More Variables.  Consider 
the case where nickel concentrations in surface soil are compared between Site A and 
background (bkgd) using the test: 
 
 22

0 : yxH σσ = ,  22: yxAH σσ ≠  . 
 
 N-4.2.1  Suppose data for nickel in surface site soil are: 2.665, 3.610, 5.470, 7.150, 8.340, 
7.960 mg/kg. And suppose data for nickel in surface background are: 5.140, 7.460, 5.990, 3.360, 
3.190, 2.870, 5.950, 1.720, 4.770, 5.605 mg/kg. 
 
 N-4.2.2  Verify the assumption of normality. For this case, the Shapiro-Wilk test is used. 
 

 Site mean = 87.51 1

1
,1

1
1 == ∑

=

n

j
jx

n
x . 

 Background mean = 61.41 2

1
,2

2
2 == ∑

=

n

j
jx

n
x . 

 
Site A  

ijiji xxz −= ,,  Backgroundd 
ijiji xxz −= ,,  

2.67 3.20 5.14 0.534 
3.61 2.26 7.46 2.854 
5.47 0.40 5.99 1.384 
7.15 1.28 3.36 1.246 
8.34 2.47 3.19 1.416 
7.96 2.09 2.87 1.736 

  5.95 1.344 
  1.72 2.886 
  4.77 0.164 
  5.61 0.999 
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 Mean of the site residuals = 95.11 1

1
,1

1
1 == ∑

=

n

j
jz

n
z . 

 

 Mean of the background residuals = 46.11 2

1
,2

2
2 == ∑

=

n

j
jz

n
z . 

 

 Overall residual mean = 64.111
11 1

, === ∑∑∑
== =

i

K

i
i

K

i

n

j
ji zn

n
z

n
z

i

. 

 

 60.12
1 1

2
, =−= ∑∑

= =

znzSS
K

i

n

j
jiTOTAL

i

. 

 

 92.0
2

=−= ∑
=

zn
n
z

SS
K

li i

i
GROUPS . 

 
 68.11=−= GROUPSTOTALERROR SSSSSS . 
 

 098.1
)216/(68.11
)12/(9167.0

)/(
)1/(

=
−
−

=
−
−

=
KNSS

KSS
f

ERROR

GROUPS . 

 
 Numerator degrees of freedom: (K – 1) = (2 – 1) = 1. 
 
 Denominator degrees of freedom: (N – K) = (16 – 2) = 14. 
 
 N-4.2.3  Because 05.0=α , the critical value 611.414,1,95.0 =F . Comparing the calculated 
value ( f ) and the critical value, 14,1,95.0F , we see that 14,1,95.0Ff ≤ , so do not reject H0. Therefore, 
we can conclude that the variance for the surface soil site concentration of nickel is equal to the 
variance of the surface soil background concentrations of nickel. 
 
N-5 Maximum F-Ratio Test for Equality of Two or More Variances.  The maximum F-
ratio tests whether three or more population variances from normal distributions are equal 
(Mason et al., 1989). The test also assumes that the sample sizes for the populations are equal. 
As this test is sensitive to departures from normality, it is recommended that normality tests be 
done before using it. Directions are given in Paragraph N-5.1, followed by an example in 
Paragraph N-5.2. 
 



EM 1110-1-4014 
15 Jan 07 
 

N-9 

 N-5.1  Directions for the Maximum F-Ratio Test for Equality of Two or More Variances.  
Let K represent the total number of populations to be compared. Let Knnn ,,, 21 K  represent the 
sample sizes of each of the K sample populations. Let N represent the total number of samples, 

knnnN ++= ....21 . Let the values from each population be represented by jix ,  where 
Ki ,,2,1 K=  for the K groups and inj ,,2,1 K=  for the observations in the ith group.  

 
 N-5.1.1  22

2
2
10 : KH σσσ === L  (no difference among the population variances). 

 
 N-5.1.2  HA : at least one variance, 2

iσ , is different from one or more of the other 
variances. 
 
 N-5.1.3  Verify the assumption of normality using one of the methods described in 
Appendix F. 
 
 N-5.1.4  Calculate the sample standard deviation for each of the K data sets. Denote these 
standard deviations by is  and the corresponding sample size by in , where Ki ,,2,1 K= . Identify 
the largest value of si, max(si), and the smallest value of si, min(si). 
 
 N-5.1.5  Calculate the ratio ( )2

max )min(/)max( ii ssf = .  
 
 N-5.1.6  If nnnn k ===== KK21 , use the critical values in Table B-27 of Appendix 
B, α,, vkF , where k = K and 1−= nv  for the desired level of significance α, to determine whether 
to reject the hypothesis of equal standard deviations. If the in  are unequal but not too different, 
use the “harmonic mean of the in ”, n′ :  
 

 1−′= nv , where ( )∑
=

=′
K

i
inKn

1
/1 . 

 
 N-5.1.7  If >maxf α,, vKF , then conclude there is evidence that the variances are not equal. 
 
 N-5.2  Example of the Maximum F-Ratio Test for Equality of Three or More Variances.  
Manganese concentrations in groundwater are compared between seven wells from Site A using 
the test:  
 
 N-5.2.1  22

0 : jiH σσ =   for all i and j. 
 
 N-5.2.2  22: jiAH σσ ≠   for some ji ≠ . 
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 N-5.2.3  The data (Table N-1) were tested for equal variances using Bartlett’s test 
(Paragraph N-3). The data were also tested for normality using the Shapiro-Wilk test. Because 
the data were not normal, they were transformed so that residuals would follow a normal 
distribution. 
 

Well 69-2-02 69-2-04 69-2-05 69-2-06A 69-2-06B 69-2-07 69-2-08 
si 0.254 0.203 0.182 0.103 0.378 0.283 0.301. 

 
( 54.8)103.0/301.0())min(/)max( 22

max === ii ssf . 
 
Table N-1 
Data for Example N-5.2 

Well location Result (mg/L) Log result Well location Result (mg/L) Log result 
69-2-02 0.432 –0.839 69-2-06A 0.294 –1.224 
69-2-02 0.44 –0.821 69-2-06A 0.301 –1.201 
69-2-02 0.513 –0.667 69-2-06A 0.379 –0.970 
69-2-02 0.704 –0.351 69-2-06A 0.352 –1.044 
69-2-02 0.327 –1.118 69-2-06A 0.346 –1.061 
69-2-02 0.316 –1.152 69-2-06B 0.13 –2.040 
69-2-02 0.454 –0.790 69-2-06B 0.184 –1.693 
69-2-02 0.401 –0.914 69-2-06B 0.209 –1.565 
69-2-04 0.0504 –2.988 69-2-06B 0.2 –1.609 
69-2-04 0.0502 –2.992 69-2-06B 0.0739 –2.605 
69-2-04 0.054 –2.919 69-2-06B 0.0876 –2.435 
69-2-04 0.0523 –2.951 69-2-06B 0.126 –2.071 
69-2-04 0.0923 –2.383 69-2-06B 0.129 –2.048 
69-2-04 0.0556 –2.890 69-2-07 0.0137 –4.290 
69-2-04 0.0534 –2.930 69-2-07 0.019 –3.963 
69-2-04 0.0517 –2.962 69-2-07 0.0163 –4.117 
69-2-05 0.00684 –4.985 69-2-07 0.0195 –3.937 
69-2-05 0.00639 –5.053 69-2-07 0.0112 –4.492 
69-2-05 0.00631 –5.066 69-2-07 0.0112 –4.492 
69-2-05 0.00813 –4.812 69-2-07 0.0102 –4.585 
69-2-05 0.00747 –4.897 69-2-07 0.00946 –4.661 
69-2-05 0.00679 –4.992 69-2-08 0.563 –0.574 
69-2-05 0.00731 –4.919 69-2-08 0.512 –0.669 
69-2-05 0.00444 –5.417 69-2-08 0.475 –0.744 

69-2-06A 0.3 –1.204 69-2-08 0.546 –0.605 
69-2-06A 0.286 –1.252 69-2-08 0.276 –1.287 
69-2-06A 0.303 –1.194 69-2-08 0.383 –0.960 

   69-2-08 0.33 –1.109 
   69-2-08 0.27 –1.309 
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 N-5.2.4  Because nnnn k ===== KK21 , use the critical values in Table B-27 of 
Appendix B with 7181 =−=−= nv . So, 80.1105.0,7,7,, == FF vK α . 
 

 N-5.2.5  Compare the calculated value (8.54) to the critical value (11.80); because the 
calculated value maxf  is not greater than the critical value, H0 cannot be rejected (i.e., there is 
evidence that the variances are equal).  
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APPENDIX O 
Measures of Correlation 

 
O-1 Introduction.  A correlation coefficient provides a measure of the degree of association 
between two variables or measurements. For example, the degree of association between pH and 
the concentration of a dissolved metal in groundwater may be of interest. The primary objective 
of calculating a correlation coefficient is to determine whether one variable increases or de-
creases as the second variable increases, or whether the two variables vary independently of one 
another. 
 
 O-1.1  In environmental applications, a correlation coefficient may be used to determine 
the strength of an association. For example, numerous groundwater sites contaminated with chlo-
rinated solvents also have high dissolved iron concentrations. Is it possible to determine whether 
the high iron locations are the same as where chlorinated solvent levels are also high? A correla-
tion coefficient for the relationship provides a quantitative measure of the degree of association 
of these measured parameters. 
 
 O-1.2  A high correlation coefficient does not prove cause and effect. When the correla-
tion between two variables is high, the relationship is strong; but one cannot conclude that one 
variable causes the other variable to increase or decrease without further evidence. Measuring 
and identifying correlation is often critical for environmental data, which are frequently corre-
lated over time or space, or both. 
 
 O-1.3  Classical statistical methods typically assume data are not correlated. If correla-
tions are not identified before data are statistically evaluated, then statistical methods can provide 
misleading results. There are also statistics that depend upon correlation in the data, such as geo-
statistics (Appendix R), and there are methods available for “detrending” or “uncorrelating” data 
under certain circumstances. These cases are beyond the scope of this discussion, and may be 
best addressed by a statistician. 
 
 O-1.4  Several different correlation coefficients for measuring the degree of association 
between two variables will be discussed. The correlation coefficients share common properties. 
Each is a dimensionless quantity with values ranging from –1 to 1. A positive correlation coeffi-
cient for two variables indicates that one variable tends to increase as the other variable in-
creases. A negative correlation indicates that one variable tends to decrease as the other variable 
increases. The highest possible degree of correlation occurs when the absolute value of the corre-
lation coefficient equals one. When two variables are truly independent, the behavior of one 
variable cannot be predicted from the other variable, and the correlation coefficient is zero. The 
references EPA 600/R-96/084, QA/G-9 and Conover (1980) contain additional details about 
measures of correlation. 
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O-2 Correlation Coefficients as Hypothesis Testing. 
 
 O-2.1  Introduction.  Calculated values of a correlation coefficient for a set of actual 
measurements are rarely identically equal to zero when a true correlation is absent (when the true 
correlation coefficient γ = 0). Therefore, a hypothesis test is done to determine the presence or 
absence of a significant correlation. Hypothesis tests are discussed in additional detail in Appen-
dices L, M, and N. 
 
 O-2.1.1  The significance of the correlation is often evaluated using a hypothesis test in 
the form: 
 
 H0: γ = 0,   HA: γ ≠ 0. 
 
 O-2.1.1.1  The correlation coefficient for a set of measured results ( )ii yx ,  is initially cal-
culated. The calculated (sample) correlation coefficient, γ̂ , is viewed as an approximation of the 
population correlation coefficient,γ , for the X and Y variables. 
 
 O-2.1.1.2  The probability, p, of obtaining the calculated value when X and Y are not cor-
related (when the true correlation coefficient γ = 0) is then determined. The probability is typi-
cally calculated by statistical software. 
 
 O-2.1.1.3  If p is sufficiently small (e.g., p ≤ α = 0.05 or 0.01), then a correlation exists. 
More accurately, the null hypothesis that the true correlation coefficient is zero is rejected (with a 
level of confidence of at least 1 – α). 
 
 O-2.1.1.4  When statistical software is unavailable, the largest possible absolute value of 
a correlation coefficient that can occur when X and Y are not correlated is obtained from a table. 
The tabular value for the 1 – α level of confidence is subsequently compared to the calculated 
value. If the calculated value is larger than the value obtained from the table, the null hypothesis 
is rejected, and the correlation coefficient is not equal to zero. 
 
 O-2.1.2  Directions and an example for using a correlation coefficient statistical test are 
in Paragraphs O-2.2 and O-2.3, respectively. 
 
 O-2.1.3  Typically, a correlation coefficient is viewed to be significantly different from 
zero if the p value is less than a specified significance level, usually taken to be between 0.1 and 
0.01. The p value is discussed in more detail in Appendices L, M, and N. Various values for the 
absolute value of the correlation coefficient, γ , qualitatively describe the degree of association 
below:  
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Absolute value of correlation coefficient Degree of relationship 

50.0<γ  Extremely Weak 

75.050.0 << γ  Weak 

90.075.0 << γ  Moderate 

95.090.0 << γ  Moderately Strong 

00.195.0 << γ  Strong 

 
 O-2.1.4  Four different sample correlation coefficients are discussed below. 
 
 O-2.1.4.1  Pearson’s r. 
 
 O-2.1.4.2  Spearman’s rho (ρ). 
 
 O-2.1.4.3  Serial correlation coefficient. 
 
 O-2.1.4.4  Kendall’s tau (τ). 
 
 O-2.1.5  Pearson’s r measures the degree of correlation between two variables for linear 
relationships. Kendall’s τ and Spearman’s ρ measure the degree of any monotonic relationship 
between two variables. Two variables, X and Y, are monotonically correlated if, overall, Y con-
sistently increases or decreases as X increases. Note that X and Y will not be monotonically cor-
related if, as X increases, Y increases then decreases (or decreases then increases). 
 
 O-2.2  Directions for a Correlation Coefficient Statistical Test.  Calculate the test statis-
tic: 
 

 

2
1 2

−
−

=

n
r

rt . 

 
 O-2.2.1  Use Table B-23 of Appendix B to find the critical value να ,2/1−t , which is (1 – 
α/2)100th percentile of the Student’s t distribution with degrees of freedom 2−= nν .  
 
 O-2.2.1.1  Conclude that the correlation is significantly different from zero if  
 
 να ,2/1−> tt . 
 



EM 1110-1-4014 
15 Jan 07 

 

O-4 

 O-2.2.1.2  Otherwise, state that there is insufficient evidence to conclude that the correla-
tion coefficient is different from zero. 
 
 O-2.2.2  A one-tailed test can be performed in a similar manner by replacing α/2 by α. 
For example, to test whether a correlation exceeds zero, compare t with 2,1 −− nt α . If 2,1 −−> ntt α  
conclude that the correlation is larger than zero. Otherwise conclude that the true correlation may 
be less than or equal to zero. 
 
 O-2.3  Example of a Test for a Correlation Coefficient.  Consider the following data set 
for chromium and lead in subsurface soil background (in mg/kg). 
 

Sample Chromium (X) Lead (Y) 
EPC-BG01 4.60 3.50 
EPC-BG02 5.29 4.16 
EPC-BG03 4.26  4.19 
EPC-BG04 5.28 3.91 
EPC-BG05 4.53 3.66 
EPC-BG06 5.74 4.31 
EPC-BG07 5.86 4.19 
EPC-BG08 3.84 3.35 

 
 O-2.3.1  The objective is to test if the correlation coefficient is different from zero, based 
on 90% level of confidence. 
 
 O-2.3.2  For 90% confidence, 10.0=α . 
 
 O-2.3.3  The correlation coefficient was calculated in Paragraph O-2.4.2 and equals 

72.0=r . 
 
 O-2.3.4  The test statistic is  
 

 563.2

28
)7229.0(1

7229.0

2
1 22

=

−
−

=

−
−

=

n
r

rt  

 
with .628 =−=ν  
 
 O-2.3.5  The critical value is 943.16,95.02,2/1 ==−− tt nα . 
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 O-2.3.6  Comparing the test statistic to the critical value, t = 2.563 > 1.943. With at least 
90% confidence, the correlation coefficient is significantly different from zero. However, given 
the magnitude of r, the linear association between chromium and lead could be qualitatively de-
scribed as “weak.” 
 
 O-2.4  Pearson’s r.  The Pearson’s r is a parametric measure of correlation for linear re-
lationship between two variables. A linear association implies that, as one variable increases, so 
does the other in a uniform manner (i.e., linearly), or as one variable decreases the other in-
creases linearly. A value of +1 implies a perfect positive linear correlation, i.e., that all the data 
pairs (xi, yi) lie on a straight line with a positive slope. A value of –1 implies perfect negative lin-
ear correlation. Directions and an example for Pearson’s correlation coefficient are presented in 
Paragraphs O-2.4.1 and O-2.4.2. 
 
 O-2.4.1  Directions for Pearson’s Correlation Coefficient.  Let x1, x2,..., xn represent one 
variable (X) of the n data points and let y1, y2,..., yn represent the corresponding values of a sec-
ond variable (Y). The Pearson correlation coefficient, r, for the sample of (xi, yi) pairs is com-
puted by: 
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n
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 O-2.4.2  Example of Pearson’s Correlation Coefficient.  Consider the following data set 
for n = 8 chromium and lead in subsurface soil background (in mg/kg): 
 

Sample Chromium(X) Lead(Y) 
EPC-BG01 4.60 3.50 
EPC-BG02 5.29 4.16 
EPC-BG03 4.26 4.19 
EPC-BG04 5.28 3.91 
EPC-BG05 4.53 3.66 
EPC-BG06 5.74 4.31 
EPC-BG07 5.86 4.19 
EPC-BG08 3.84 3.35 

 
 O-2.4.2.1  For chromium,  
 

 39.43.845.865.744.535.284.265.294.60
8

1
=+++++++=∑

=i
ix  
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 7.1973.845.865.744.535.284.265.294.60 22222222
8

1

2 =+++++++=∑
=i

ix  . 

 
So, 925.48/4.39 ==x and  
 

 7226.0
7

)925.48(7.197
1

2
1

22

=
×−

=
−

−
=
∑
=

n

xnx
s

n

i
i

x  . 

 
 O-2.4.2.2  For lead,  
 

 31.273.354.194.313.663.914.194.163.50
8

1

=+++++++=∑
=i

iy  

 

 2.1233.354.194.313.663.914.194.163.50 22222222
8

1

2 =+++++++=∑
=i

iy . 

 
So, 909.38/27.31 ==y  and  
 

 3632.0
7

)909.38(2.123
1

2
1

22

=
×−

=
−

−
=
∑
=

n

yny
s

n

i
i

y . 

 
 O-2.4.2.3  The “cross term” dependent upon the product of chromium and lead is: 
 

155.3.3.35)84.3(4.19)86.5(4.31)74.5(3.66)53.4(

3.91)28.5(4.19)26.4(4.16)5.29(3.50)60.4(

=×+×+×+×

+×+×+×+×=∑
n

i
ii yx

 

 
So, 
 

 72.0
3729.07226.07

)909.3925.48(3.155
=

××
××−

=r . 

 
Paragraphs O-2.4.3 and O-2.4.4 will demonstrate how to test whether the sample correlation co-
efficient indicates that the population correlation coefficient differs from zero. 
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 O-2.4.3  Discussion.  Although two independent variables will produce a correlation co-
efficient of zero, it should be noted that a calculated correlation coefficient that is equal to or 
near zero does not demonstrate the absence of a significant relationship between the two vari-
ables. For example, because Pearsons’ r does not detect non-linear relationships, a strong non-
linear relationship could result in a value of r equal to zero. 
 
 O-2.4.3.1  The data from the previous example are illustrated in Figure O-1. Correlation 
coefficients should be used with scatter plots to determine whether a low value of Pearson’s r is 
due to a non-linear relationship or a lack of association. 
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Figure O-1.  Scatter plot for chromium and lead. 

 
 O-2.4.3.2  Pearson’s r can be sensitive to the presence of one or two extreme values, es-
pecially when sample sizes are small. Such values may result in a high correlation, suggesting a 
strong linear trend, when only a moderate or weak trend is present. This may happen, for in-
stance, if a single (x, y) pair has very high values for both measurements while the remaining 
data values are uncorrelated. For example, Figure O-2 plots an example where a very large out-
lier exists. Including the outlier leads to a sample correlation coefficient of 0.96. Without this 
value, the sample correlation coefficient falls to –0.10. Extreme values may also lead to low 
sample correlation coefficients, thus tending to mask a strong linear trend. This may happen if all 
the (x, y) pairs except one (or two) tend to cluster tightly about a straight line, and the exceptional 
point has a very large X value paired with a moderate or small Y value (or vice versa). Because of 
the influences of extreme values, it is wise to use a scatter plot in conjunction with a Pearson cor-
relation coefficient. 
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Figure O-2.  Scatter plot with outlier. 

 
 O-2.4.3.3  An important property of Pearson’s r is that it is unaffected by changes in lo-
cation of the data (adding or subtracting a constant from all of the X or Y measurements) and by 
changes in scale of the data (multiplying the X or Y values by a positive constant). Linear trans-
formations on the data pairs do not affect the correlation coefficient of the measurements. For 
example, if one variable in the pair was temperature in degrees Celsius, then the correlation 
would not change if Celsius is converted to Fahrenheit. 
 
 O-2.4.3.4  However, Pearson’s r is not invariant to non-linear transformations. If non-
linear transformations of the measurements are made, then the Pearson correlation coefficient be-
tween the transformed values will differ from the Pearson correlation coefficient of the original 
measurements. For example, if X and Y represent PCB and dioxin concentrations in soil, respec-
tively, and ( )LogU X=  and ( )LogV Y= , then the Pearson correlation coefficients between X 
and Y and between U and V will be different because the logarithmic transformation is a nonlin-
ear transformation. 
 
 O-2.4.3.5  It should be further noted that statistical tests that use r to estimate the popula-
tion correlation coefficient rely on the assumption that the true relationship between the variables 
X and Y follows a bivariate normal distribution. If either variable X or Y is not normal, then to-
gether X and Y are not likely to follow a bivariate normal distribution. For more details see 
Snedecor and Cochran (1982). 
 
 O-2.5  Spearman’s rho.  Spearman’s rank correlation coefficient measures monotonic 
correlation for ordinal data (data that can be ranked) and is nonparametric (i.e., can be used when 
the data are not normally distributed). 
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 O-2.5.1  Introduction.  Data may be either linearly or non-linearly correlated. When one 
variable tends to consistently increase or decrease as another variable increases, the two variables 
possess a monotonic correlation. Unlike Pearson’s r, Spearman’s rho, ρ, may be used to measure 
the strength of both linear and nonlinear relationships. 
 
 O-2.5.1.1  It is calculated by first replacing each value x, by its rank R(x) (1 for the small-
est x value, 2 for the second smallest, etc.) and each value y by its rank R(y). These pairs of ranks 
are then treated as the (x, y) data and Spearman’s rank correlation is calculated using the same 
formula as for Pearson’s correlation.  
 
 O-2.5.1.2  Directions and an example for calculating a Spearman’s rank correlation coef-
ficient are contained in the Paragraphs O-2.5.2 and O-2.5.3. 
 
 O-2.5.1.3  Because meaningful (monotonically increasing) transformations of the data 
will not alter the ranks of the respective variables (the ranks for Log(x) will be the same as the 
ranks for x), Spearman’s correlation will not be altered by non-linear increasing transformations 
of x and y. For instance, the Spearman correlation between PCB and dioxin concentrations (x and 
y) in soil will be the same as the correlation between their logarithms, Log(x) and Log(y). Be-
cause Spearman’s ρ is a nonparametric measure of correlation, it is invariant for monotonic in-
creasing transformations and is less sensitive to extreme values than Pearson’s correlation. 
However, Pearson’s r has higher statistical power than Spearman’s ρ. 
 
 O-2.5.2  Directions for the Spearman’s Rank Correlation Coefficient.  Let  
 
 ( ) ( ) ( )nxRxRxR ,,, 21 K   
 
represent a set of ranks of the n data points for the variable X and let  
 
 ( ) ( ) ( )nyRyRyR ,,, 21 K   
 
represent a set of ranks of a second variable Y of the n data points. The Spearman sample correla-
tion coefficient, ρ , for X and Y is computed by: 
 

 
( ) ( )

( )

( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( )yRxR

n

i
ii

yR

i
n

i xR

i

ssn

yRxRnyRxR

s
yRyR

s
xRxR

n )1(1
1 1
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−
=⎟

⎟
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⎞
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⎝
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ρ  . 

 
 O-2.5.3  Example of Spearman’s Correlation Coefficient.  Consider the following data set 
for chromium and lead in subsurface soil background (in mg/kg): 
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Sample Chromium(X) Lead(Y) 

EPC-BG01 4.60 3.50 
EPC-BG02 5.29 4.16 
EPC-BG03 4.26 4.19 
EPC-BG04 5.28 3.91 
EPC-BG05 4.53 3.66 
EPC-BG06 5.74 4.31 
EPC-BG07 5.86 4.19 
EPC-BG08 3.84 3.35 

 
 O-2.5.3.1  First the data must be ranked: 
 

Sample Chromium Rank (X) Lead Rank (Y) 
EPC-BG01 4.60 4 3.50 2 
EPC-BG02 5.29 6 4.16 5 
EPC-BG03 4.26 2 4.19 6.5 
EPC-BG04 5.28 5 3.91 4 
EPC-BG05 4.53 3 3.66 3 
EPC-BG06 5.74 7 4.31 8 
EPC-BG07 5.86 8 4.19 6.5 
EPC-BG08 3.84 1 3.35 1 

 
 
 O-2.5.3.2  Notice that two of the lead values are equal, so their rank is assigned to be the 
average of ranks 6 and 7. 
 
 O-2.5.3.3  For chromium, ( ) 5.4=xR , and ( ) 45.2=xRs . 
 
 O-2.5.3.4  For lead, ( ) 5.4=yR , and ( ) 43.2=yRs . 

 
 O-2.5.3.5  The sum of the cross-products for chromium and lead ranks is: 
 

( ) ( )
8

1

(1 1) (2 6.5) (3 3) (4 2) (5 4) (6 5) (7 8) (8 6.5)

189 .

i i
i

R x R y
=

= × + × + × + × + × + × + × + ×

=

∑  

 
 O-2.5.3.6  The correlation coefficient is  
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 647.0
43.245.27

)5.45.48(189
=

××
××−

=ρ  . 

 
 O-2.6  Serial Correlation Coefficient.  The serial correlation coefficient is a measure of 
the extent to which successive observations (either in time or space) are related. The primary dif-
ference between the serial correlation coefficient and other measures of correlation is the manner 
in which the correlation coefficient is used and the manner in which one of the variables is 
scaled. For example, the serial correlation coefficient is frequently used to determine the behav-
ior of some variable of interest X with respect to time (t). Frequently, the variable X is measured 
at equally spaced time intervals, so that the data points are of the form (x1, t1), (x2, t2),…., (xn, tn). 
The serial correlation coefficient may be a parametric or non-parametric measure of correlation, 
depending upon how it is calculated. For example, if variable X is being evaluated with respect to 
time t, Spearman’s ρ is essentially being calculated if the values of X are replaced with the corre-
sponding ranks. Directions and examples for calculating a serial correlation coefficient are pre-
sented in the following two Paragraphs. 
 
 O-2.6.1  Directions to Calculate the Serial Correlation Coefficient.   
 
 O-2.6.1.1  For a sequence of data points taken serially in time, or “one-by-one in a row,” 
the serial correlation coefficient can be calculated by replacing the sequencing variable by the 
numbers 1 through n and calculating Pearson’s correlation coefficient with x being the actual 
data values, and y being the numbers 1 through n. For example, for a sequence of samples col-
lected every 10 feet along a straight transit line at a waste site, the distances on the transit line of 
the data points are replaced by the numbers 1 through n, for samples taken at 10-foot intervals 
(first 10-foot sample point = 1, the 20-foot sample point = 2, the 30-foot sample point = 3, etc.)  
 
 O-2.6.1.2  To calculate the serial correlation coefficient, let x1, x2,..., xn  represent the data 
values collected in sequence over equally spaced periods. Label the periods 1, 2..., n to match the 
data values. Use the directions above to calculate the Pearson’s Correlation Coefficient between 
the data, x, and the time-periods, y. 
 
 O-2.6.2  Estimating the Serial Correlation Coefficient.  Consider benzene results taken 
from quarterly groundwater samples at well MW01 in Site A from 1998–2000. Benzene has 
been detected during all of these sampling events, so no proxy concentrations were derived. 
Also, notice how the numbers 1 through 10 replace the actual sample dates. 
 

Time Jan-98 Apr-98 Jul-98 Oct-98 Apr-99 Jul-99 Oct-99 Apr-00 Jul-00 Oct-00
Time Period 
Number 

1 2 3 4 5 6 7 8 9 10 

Concentration 
(μg/L) 

12.2 3.79 3.42 5.47 0.81 1.84 7.56 4.3 2.68 6.17 
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 O-2.6.2.1  For the concentration (X), 
 

 24.48
10

1

=∑
=i

ix , 8.329
10

2 =∑
i

ix , 824.4=x , and 284.3=xs . 

 
 O-2.6.2.2  For the time period (Y), 
 

 55
10

1
=∑

=i
iy , 385

10
2 =∑

i
iy , 5.5=y , and 028.3=ys . 

 
The cross term is: 
 

 2.240
10

1
=∑

=i
ii yx . 

 
 O-2.6.2.3  Using Paragraph O-2.4.1, we see that the Pearson correlation coefficient, r, be-
tween the concentration (X) and the time period (Y) gives a serial correlation coefficient of: 
 

 2813.0
028.3284.39

)5.5824.410(2.240
−=

××
××−

=r . 

 
 O-2.7  Kendall’s Coefficient of Rank Correlation.  In instances where data do not follow 
a normal or other known distribution, it is still possible to test for the significance of association 
between two variables. Kendall’s coefficient of rank correlation, also referred to as Kendall’s τ 
(the Greek letter tau), is a measure of correlation that may be used for variables that are at least 
ordinal in nature (i.e., variables with values that can be ranked). It is frequently encountered in 
ecological applications such as counting of fish species in a stream in different seasons.  
 
 O-2.7.1  Introduction.  Kendall’s τ does not assume any particular data distribution and 
accommodates censored values. Non-detected results should be assigned a value smaller than the 
lowest measured value. As the test depends only upon signs of the differences between data 
points (or the ranks), information about magnitudes of these differences is not used; as a result, 
the test possesses less power than its parametric counterpart, Pearson’s r (i.e., a larger number of 
data points are required to identify a correlation using Kendall’s τ). However, Kendall’s τ is ad-
vantageous because assumptions about the underlying data distribution are not required, and it is 
less sensitive to outliers and censored values than a parametric test. 
 
 O-2.7.1.1  Kendall’s τ is also invariant with respect to monotonic transformations of the 
variables. For example, the calculated value of τ will be identical to the calculated value for log-
transformed variables. See the discussion at the end of Paragraph O-2.5 for more details. It 
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should also be noted that for the same data, the value for Kendall’s τ is generally lower than for 
Spearman’s r (Conover, 1980). However, statistical tests for γ = 0 are generally in agreement be-
tween the two. 
 
 O-2.7.1.2  Kendall’s τ for small sample sizes is appropriate for data with fewer than 40 
samples (Gilbert, 1987); the EPA suggests using this method with data sets fewer than 10 sam-
ples. Tied observations (when two or more measurements are equal) degrade the statistical power 
and should be avoided, if possible, by recording the data to sufficient accuracy. If the number of 
samples becomes too large, the calculations become cumbersome to do by hand. Directions for 
calculating Kendall’s τ for a small sample size (less than 10 samples) are presented in Paragraph 
O-2.7.2 and an example is presented in Paragraph O-2.7.3. Extensions of Kendall’s τ for larger 
sample sizes are explained with the Mann-Kendall test for trends in Appendix P. In that Appen-
dix, the time variable corresponds to the X variable here, and the X variable in Appendix P corre-
sponds to the Y variable here. 
 
 O-2.7.2  Directions for Kendall’s Coefficient of Rank Correlation.  Let 
( ) ( ) ( )nn yxyxyx ,,,,,, 2211 K  represent pairs of measurements of variables X and Y. Order the pairs 
from least to greatest by the x value ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )
nxnxx yxyxyx ,,,,,,

21 21 K . Here the notation 
( )ixy  

indicates the Y measurement that corresponds to the ith X measurement ordered from least to 
greatest. The test statistic S is then calculated:  
 
 −+ −= SSS  
 
where +S  is the number of positive (“concordant”) pairs: 

( ) ( )
( )

ji xx yy ,  with ji <  and 
( ) ( )ji xx yy < . 

Likewise, −S  is the number of negative (“discordant”) pairs: 
( ) ( )

( )
ji xx yy ,  with ji <  and  

 
 

( ) ( )ji xx yy > .  
 
It can be shown that there are a total of ( ) 21−nn  possible pairwise comparisons for a set of n 
pairs 

( ) ( )
( )

ji xx yy , . The sample statistic Kendal1’s τ, is: 
 

 ( ) 21−
=

nn
Sτ  . 

 
Note that differences of zero are not included in the test statistic (and should be avoided, if pos-
sible, by recording data to sufficient accuracy). However, an adjustment for ties may be made by 
calculating Kendall’s “tau b,” τb  
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The quantities Xn′  and Yn′ denote the number of ties for the X variable and Y variable, respec-
tively. In particular, if there are n pairs of values ( )ji yx , , so that the measured values of X 
are nxxx ...,, 21 , then Xn′  is the number of pairs ( )ji xx , , where i > j, for which ( ) 0=− ji xx  or for 
which this difference cannot be determined to be either positive or negative because of data cen-
soring. For example, assume that there are multiple censoring limits for non-detects (e.g., < 3 and 
< 5), and X is the set of n = 5 values {< 1, < 3, < 5, 2, 10} with the corresponding Y values {2, 4, 
5, 7, 9}, so that, for example, the first pair of results ( )11, yx  is ( )2,1< . There are five tied pairs 
for the measured values of X: (< 1, < 3), (< 1, < 5), (< 3, < 5), (< 3, 2), and (< 5, < 2). Therefore, 

5=′Xn . As there are no tied values for Y, 0=′Yn . Note that when ττ ==′=′ bYX nn ,0 . Tied val-
ues tend produce larger values for τb relative to the corresponding values for τ. 
 
 O-2.7.2.1  Table O-1 presents the resulting matrix of differences when applying the steps 
above. Fill in the blank spaces with a 1 if the value at the top of the column exceeds the value at 
the left of the row. Fill in 0 if they are equal, and fill in –1 otherwise. Then sum the values across 
rows and add up the sums to get S. 
 
Table O-1  
Resulting Matrix of Differences 

Y Measurements ( )2xy  
( )3xy  . . . ( )nxy  Sum of Row 

( )1xy       

( )2xy       

. . .      

( )1−nxy       
     S 

 
 O-2.7.2.2  Use Table B-10 of Appendix B to determine the probability (p) using the sam-
ple size (n) and the absolute value of the statistic S if 10≤n .  
 
 O-2.7.2.3  For testing H0: 0=γ  against HA: 0≠γ  at significance level α, reject H0 if 

2α<p . 
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 O-2.7.3  Example of Kendall’s Rank Correlation Coefficient.  Consider the same data set 
presented in Paragraphs O-2.4.2 and O-2.5.2 for chromium and lead in subsurface soil back-
ground (in mg/kg). Although these data are for continuous variables, it is possible to determine 
the rank correlation between chromium and lead using Kendall’s τ. 
 
 O-2.7.3.1  First the data must be ordered by the chromium measurements as shown be-
low. 
 

Sample Chromium Lead 
EPC-BG08 3.84 3.35 
EPC-BG03 4.26 4.19 
EPC-BG05 4.53 3.66 
EPC-BG01 4.60 3.50 
EPC-BG04 5.28 3.91 
EPC-BG02 5.29 4.16 
EPC-BG06 5.74 4.31 
EPC-BG07 5.86 4.19 

 
 O-2.7.3.2  Then, create Table O-2 for the lead measurements as described in Paragraph 
O-2.7.2. 
 

O-2.7.3.3  From Table O-2, S = 15. There are n = 8 pairs of lead and chromium meas-
urements. Therefore, Kendall’s tau is: 

 

( ) ( ) 0.536
2188

15
21

=
−

=
−

=
nn

Sτ .  

 
As there is one tie for the lead measurements (two measurements equal 4.19) 
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b

nnnnnn
Sτ 0.546. 

 
 O-2.7.3.4  To test whether the population correlation coefficient differs from 0 with 90% 
confidence (α = 0.05), look up the value of p corresponding to S = 15 for n = 8 in Table B-10. 
Owing to the tied value for lead, S = 15 does not appear in the table. Ideally, the data should have 
been recorded with more accuracy to break the tie. In this case, the value for S = 14 will be used 
to give p = 0.054 > α/2 = 0.05. We conclude that the population correlation coefficient does not 
differ significantly from zero with 90% confidence although further study may be needed. 
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 O-2.8  Covariance.  A statistic related to the correlation coefficient is covariance. Covari-
ance is a measure of the linear association between two random variables, X and Y. If covariance 
is positive, large values of X tend to be associated with large values of Y and vice versa. If co-
variance is negative, large values of X tend to be associated with small values of Y and vice 
versa. The sample covariance is calculated as  
 

 ( )( )
)1(1

1 1

1 −

−
=−−

−
=

∑
∑ =

= n

yxnyx
yyxx

n
s

n

i
iin

i
iixy .  

 
Table O-2  
Resulting Matrix of Differences 

Lead Measurements 4.19 3.66 3.50 3.91 4.16 4.31 4.19 Sum of Row 

( )
35.3

1
=xy  1 1 1 1 1 1 1 7 

( )
19.4

2
=xy   –1 –1 –1 –1 1 0 –3 

( )
66.3

3
=xy    –1 1 1 1 1 3 

( )
50.3

4
=xy     1 1 1 1 4 

( )
91.3

5
=xy      1 1 1 3 

( )
16.4

6
=xy       1 1 2 

( )
31.4

7
=xy  

      –1 –1 

        S = 15 

 
 O-2.8.1  Pearson’s correlation coefficient is derived from the covariance by dividing co-
variance by the sample standard deviations of X and Y. 
 
 O-2.8.2  Covariance is rarely used because the magnitude of its value is difficult to inter-
pret. In particular, changes in scale cause changes to the covariance; that is, covariance is not in-
variant to changes in scale. For example, if X is multiplied by 100, its covariance with Y will also 
go up by a factor of 100, while its correlation with Y will remain the same. 
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APPENDIX P 
Comparing Laboratory and Field Data 

 
P-1 Introduction.  Interpreting field data may arise in the SI and RI phases of a CERCLA 
project. The following discussion applies to comparing field data results to laboratory results. 
 
 P-1.1  As previously discussed, there is an inherent relationship among variability, the 
statistical decision confidence required, and the number of data points one must have to make the 
decision. There is a trade-off between cost and data quality (level of confidence for the decision-
making). In general, cost and the level of confidence increase as the number of samples in-
creases. In fact, a small set of very high quality individual measurements (e.g., from a fixed-
laboratory analytical method) is frequently not as desirable as a large number of lower quality 
measurements (e.g., from a field analytical method). If rapid and inexpensive methods of sam-
pling and analysis were available for the SI, a larger number of samples could be used to charac-
terize the study area, reducing both cost and decision uncertainty. However, such methods with 
sufficient reliability are not always available. 
 
 P-1.2  There are many innovative field-based sampling and analysis techniques and tech-
nologies available to environmental scientists. Because of the ability to reproduce these sampling 
techniques with an acceptable level of accuracy and at relatively low cost, investigators can still 
make decisions with confidence based on field analyses. 
 
 P-1.3  When applying field analytical technologies to a given site, the project team often 
collects larger sample aliquots for a percentage of the field samples to ensure that the field meth-
ods are providing reasonably precise, accurate, and representative results. Each aliquot is thor-
oughly homogenized (i.e., unless VOCs are being analyzed) and split into a pair of duplicate 
samples; one sample is analyzed by the field method and the remaining sample of the duplicate 
pair is sent to a fixed laboratory for analysis. The results of the laboratory and field analyses are 
then compared to assess the usability of the field results. 
 
 P-1.4  Although the EPA has generally specified splitting 10% of screening samples with 
a fixed laboratory for confirmation analysis, this is an arbitrary criterion. Furthermore, there is 
little guidance on how to compare field and fixed laboratory results and the criteria for accept-
able agreement. Therefore, a number of possible approaches are available and discussed here, in-
cluding the following. 
 
 P-1.4.1  Relative percent difference (RPD). 
 
 P-1.4.2  Correlation analysis. 
 
 P-1.4.3  Regression analysis. 
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 P-1.4.4  Group comparisons. 
 
 P-1.4.5  Percent decision match. 
 
 P-1.5  Project planners should be sensitive to the possible comparison methods so that 
sampling design is appropriate for the data collected and the decision to be made at their particu-
lar site. 
 
P-2 Relative Percent Difference.  The RPD for a duplicate pair of measurements (x1, x2) is 
the absolute value of the difference between the measurements divided by the mean of the meas-
urements x , expressed as a percentage: 
 

 10021 ×
−

=
x

xx
RPD  . 

 
 P-2.1  The RPD is simple to calculate and has historically been used to compare two sets 
of data. The field values and the corresponding laboratory values are treated as duplicate pairs, 
and an RPD is calculated for each pair. It should be noted that, as it is usually used for environ-
mental applications, the RPD is not a statistically based measure of agreement. The approach is 
semi-quantitative at best, and, in general, is not recommended. Acceptance limits for the RPDs 
tend to be arbitrarily defined and unrelated to acceptable tolerances for uncertainty (i.e., the RPD 
acceptance limits are not derived from statistically based data quality objectives for the project). 
Furthermore, the EPA has not established fixed acceptance limits for the RPDs of field dupli-
cates, though EPA Region II has specified field duplicate acceptance limits for metals for data 
review. 
 
 P-2.2  The RPD limit for field duplicates is 50% for water and 100% for soils. RPD val-
ues from intra-laboratory studies are available for most SW-846 methods, but the values repre-
sent only the analytical component of the variability. As the RPD is proportional to the absolute 
difference, it is not useful for evaluating bias. Moreover, in terms of project decision-making, a 
process has not been developed to readily quantify the uncertainty associated with field results, 
nor has a range of acceptable RPD results been developed to determine whether field results are 
within decision limits. 
 
P-3 Correlation Analysis. 
 
 P-3.1  Field data can be compared to confirmation data, typically fixed laboratory data, 
using correlation analysis. In this case, the data are paired and plotted on a graph, and a Pear-
son’s r,* which is a measure of the degree of linear association between the two sets of data, is 

                                                 
* Appendices O and Q. 
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calculated. Paired statistical tests are useful because they can be used to determine whether a 
screening-level method is producing data that are significantly different from a definitive 
method. Higher values of Pearson’s r are preferred, as this indicates increasing similarity be-
tween the field and confirmation data. For sufficiently high values of Pearson’s r, the field data 
can reliably be used as a proxy for the confirmation data. As previously stated, there are no fixed 
limits for comparison, but Appendix O provides some guidance for assessing correlation results 
in terms of values of Pearson’s r.  
 
 P-3.2  However, there are a number of problems with using correlation analysis as a 
comparison tool. A principal problem is that correlation does not imply a cause-and-effect type 
of relationship or provide predictive capabilities. In other words, correlation analysis cannot be 
relied upon to show how variable X affects variable Y, or how X is a predictor of unknown values 
of Y. Thus, correlation analysis is intended as a statistical tool to simply show how two variables 
are linearly related and the strength of this relationship. An additional problem, or complexity, 
with correlation analysis is that the principal statistic reported in the analysis, Pearson’s r, re-
quires the X and Y variables to possess a bivariate normal distribution* (not only must X and Y be 
normal but the “joint variation” must also be normal; that is, if every possible (x, y) pair were 
available, Y must be normal for every fixed value X = x and X must be normal for every fixed 
value Y = y). Finally, it is entirely possible that data sets paired in order of concentration will 
show linear correlation when the absolute differences between them are very large, but in some 
manner proportional. Thus, along with other measures, if the data give a good linear or curvilin-
ear fit with strong correlation, this may be taken to support but not prove confirmation between 
results. 
 
P-4 Regression Analysis.  Field data are often compared to confirmation data, typically fixed 
laboratory data, using regression analysis. In this case, the data are paired and plotted on a graph 
and a best-fit line is created. The regression model can provide information regarding the magni-
tude of the difference or the functional relationship between the screening-level and definitive 
methods, so that screening-level data can be converted to definitive data. 
 
 P-4.1  However, functional relationships between screening-level and definitive data are 
often inappropriately established. Classical linear regression analysis, as presented in Appendix 
O, is not appropriate for this analysis because both screening-level data (the “dependent” vari-
able) and laboratory concentrations (the “independent” variable) are measured values, and be-
cause the laboratory concentrations (the “independent” variable) has more than a negligible 
amount of variability. For example, the laboratory concentrations could be selected as the “inde-
pendent” variable X to generate a regression line of the form, 
 
 01 bxby += .  

                                                 
* Appendix O. 
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 P-4.2  This implies  
 
 )/()/1( 101 bbybx −+= . 
 
 P-4.3  However, the alternative selection of Y as the “independent” variable would pro-
duce a regression line,  
 
 01 bybx ′+′=  . 
 
 P-4.4  Unfortunately, 11 /1 bb ≠′  and )/( 100 bbb −≠′ . In other words, the classic or ordi-
nary least squares (OLS) line produced from X and Y measurement data depends upon whether X 
or Y is arbitrarily selected as the independent variable. Therefore, it would be inappropriate to 
generate a regression line to “convert” screening level measurements to laboratory concentra-
tions (or vice versa). 
 
 P-4.5  In place of OLS linear regression, reduced major axis (RMA) regression is a rea-
sonable parametric approach, while the Kendall-Theil line is a desirable non-parametric ap-
proach for establishing a linear relationship. Advantages to reduced major axis regression are the 
following. 
 
 P-4.5.1  While a classic (OLS) regression line of the form y = b1x + b0 minimizes the sum 
of the distances in the y-direction from the regression line to each observed point yi, the RMA 
line minimizes error for both X and Y by minimizing the sum of the areas of right triangles 
formed by horizontal and vertical lines extending from each observation ( )ii yx ,  to the best-fit 
straight line (Helsel and Hirsch, 1992, p. 276). 
 
 P-4.5.2  Unlike OLS regression, RMA regression produces a unique line regardless of 
which variable, X or Y, is used as the response or independent variable. 
 
 P-4.6  RMA regression is used to model the correct functional relationship between two 
variables when both variables possess comparable measurement error. It is commonly used to 
evaluate biological data. All of the assumptions required for OLS regression are required for 
RMA regression (e.g., the residuals must be normally distributed). RMA regression has also 
been called “line of organic correlation,” “geometric mean functional regression,” and “Mainte-
nance of Variance-Extension” (Helsel and Hirsch, 2003). Reduced major axis regression should 
not be confused with an alternative approach referred to as “major” or “principal axis” regres-
sion. Major axis regression is often used in lieu of RMA regression as it is conceptually similar; 
the best fit line minimizes the sum of the squares of the perpendicular distances between the line 
and each plotted observation (rather than the areas of right triangles). Both reduced major axis 
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and major axis regression are often referred to as “model II” regression (OLS regression is 
“model-I” regression). 
 
 P-4.7  The slope )( 1b ′′  and intercept )( 0b ′′  of the RMA regression line 01 bxby ′′+′′=  are as 
follows: 
 
 ( )xy ssrsignb /][1 =′′  
 
 xbyb 10 ′′−=′′  
 
where ][rsign is the algebraic sign of Pearson’s r; ys and xs are the sample standard deviations of 
Y and X , respectively; and y and x  are the sample arithmetic averages of Y and X , respec-
tively. Like an OLS regression line, the RMA regression line passes through the point ( )yx, , but 
(unlike an OLS regression line) the slope does not depend upon the magnitude of the regression 
coefficient r. Given the OLS regression lines 01 bxby += and 01 bybx ′+′= , an alternative ex-
pression for the major axis regression slope is: 
 
 111 /][ bbrsignb ′=′′ . 
 
 P-4.8  Thus, the slope of the RMA regression line is essentially the geometric mean of the 
OLS slopes b1 and 1/1 b′  (hence the use of the terminology “geometric mean regression”). An 
equivalent expression for the RMA slope is: 
 
 rbb 11 =′′  
 
Note that, because r ≤ 1, the RMA slope will be equal to or greater than the slope of the corre-
sponding OLS regression line. 
 
 P-4.9  Confidence limits can be calculated for the slope and intercept of the RMA regres-
sion line. The (1 – α)100% confidence interval for the slope is as follows (Warton, 2005)  
 

 ( ) ( )[ ]BBbBBb ++′′−+′′ 1,1 11  (P-1) 

where 
 

 
2

)1( 2
2,1,1

−

−
= −−

n
rF

B nα  
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2,1,1 −− nF α  is the critical value of the F-distribution with 1 degree of freedom in the numerator and 

n – 2 degrees of freedom in the denominator.  The confidence limits for the intercept are: 
 
 02,210 stb n −−±′′ α  . (P-2) 
 
 P-4.10  The quantity s0 denotes the estimated standard deviation of the intercept of the 
OLS regression line 01 bxby += , which may be determined from the equation: 
 

 2
1

2

0 sx
n
ss +=  . 

 
 P-4.11  The quantity s2 denotes the estimated variance of residuals of the OLS regression 
line 01 bxby +=  and 2

1s  the estimated variance of slope of the OLS slope 
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 P-4.12  The reader is referred to software that can be used to calculate RMA regression 
lines as well as confidence limits for the slopes and intercepts (Bohonak, 2004), though the soft-
ware does not calculate the confidence limits of the slope using Equation P-1 but using an ap-
proximation that produces a similar result: 
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 12,211 stb n −−±′′ α  . 
 
 P-4.13  A non-parametric approach for establishing a linear relationship is the Kendall-
Theil line. The line takes the form: 01

ˆˆ bxby += . The slope )ˆ( 1b  is computed by comparing each 
data pair to all others in a pairwise fashion. A data set of n (x, y) pairs will result in n(n – 1)/2 
pairwise comparisons. For each of these comparisons, a slope is computed by  
 

 
( )
( )ij

ij
ij xx

yy
m

−

−
=  for all ji < ; )1(,,2,1 −= ni K ; and nj ,,3,2 K= .  

 
 P-4.14  Note that ijm is the value of the random variable, M . The slope )ˆ( 1b  and intercept 

)ˆ( 0b  are estimated as follows: 
 
 mb ~

1̂ = , where m~ is the median of M  
 
and 
 
 xbb ~ˆ-y~ˆ

10 = , where y~ and x~ are the medians of Y and X , respectively. 
 
 P-4.15  Therefore, the line passes through the point )y~,~(x , analogous to the ordinary 
least squares regression line, which passes through the point ),( yx . The Kendall-Theil line is 
closely related to the Kendall’s τ (see Appendix O) because the hypothesis test that 1̂b is equal to 
zero is the same as the hypothesis test that τ is equal to zero. The Kendall-Theil line has the de-
sirable property of a nonparametric estimator: it is almost as efficient as the parametric estimator 
when all assumptions of normality are met, and is much better when those assumptions are not 
met (Helsel and Hirsch, 2003). A confidence limit for the slope of the line can be calculated by 
ordering the slopes ijm  for all ji < ; )1(,,2,1 −= ni K  and nj ,,3,2 K=  from smallest to largest, 
and selecting the rth and sth slopes such that the following inequality holds true: 
 
 ( ) .1)()( α−≥<< sr mMmP   
 
 P-4.16  For more details about this confidence limit, see Statistical Methods in Water Re-
sources (Helsel and Hirsch, 2003) or Practical Nonparametric Statistics (Conover, 1980).  

 
P-5 Group Comparisons.  In a manner similar to the comparison between background and 
on-site data, screening and definitive confirmation data can be compared as groups. After verify-
ing that the minimum assumptions of the various tests are met, group means and variances can 
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be compared using t- and F-tests or their non-parametric equivalents (see Appendices M and N). 
In this case, the project team must decide on the decision confidence required, most likely α will 
be 0.2 or less. Methods for determining decision confidence levels are discussed in Appendix K. 
 
 P-5.1  The following provides a review of issues that must be considered when applying 
the method of group comparisons; the review primarily focuses on comparing distinctly different 
groups of data. Consider a site that contains areas of both high and low contamination. Given the 
extreme divergence in contamination levels, there will be different population means across the 
sampled areas. Sample data analyzed using Field Method A cannot simply be compared to the 
entire set of sample data using Laboratory Method B with a two-sample t-test (refer to Appendix 
N) because of the different mean levels of the measured contaminant. For this approach to be vi-
able (i.e., two sample t-test based on field and laboratory methods), the underlying population 
would need to be relatively homogeneous. If this condition is not met, statistical tests for paired 
data would need to be used.  
 
 P-5.2  Paired statistical tests are recommended to determine whether Field Method A and 
Laboratory Method B are significantly different. To conduct these tests, an aliquot is homoge-
nized and split into duplicates (it is possible the sample extracts would be split as well). One du-
plicate is analyzed by Method A and the other analyzed by Method B. For each data pair, the 
researcher evaluates the difference in results provided between Methods A and B. If the results 
from Method A are not different from corresponding results provided by Method B and the dif-
ferences are normally distributed, then on the average, the difference between the two methods is 
zero. However, it should be noted that, as the differences are usually calculated over a range of 
concentrations (rather than at a single concentration), an average difference of zero does not 
necessarily demonstrate that Methods A and B are comparable. For example, it would be possi-
ble for Method A to produce much smaller values than Method B at low concentrations but much 
larger values at high concentrations so that, on the average, the differences between Method A 
and Method B over the entire concentration range is nearly zero. If Methods A and B are differ-
ent, then the researcher should establish a functional relationship (XB = f(XA)) using regression 
analysis to “convert” the Field Method A results (XA) to the corresponding laboratory Method B 
results (XB) (see Paragraph P-4 for a discussion of regression analysis). The computed relation-
ship, though, would need to quantify the uncertainty associated with the conversion. If this un-
certainty is small relative to the uncertainty contributed by the field component, then the 
conversion uncertainty can be ignored and the “converted results” (XB) used directly (i.e., can be 
treated as if they were directly obtained from a definitive laboratory method). 
 
P-6 Percent Decision Match (PDM).  The PDM may be a practical and useful approach to 
confirmation testing. The PDM is a qualitative evaluation strategy, as opposed to a more tradi-
tional statistical or quantitative strategy. For example, in the PDM, the decision error is not quan-
tified and the variability in PDM results for a study area is not incorporated into the analysis. The 
PDM approach may be useful certain data quality objectives, namely to determine whether site 
contamination exceeds a specified decision limit.  
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 P-6.1  The PDM is calculated as the number of times both data points in a data pair lead 
to the same conclusion divided by the total number of data pairs, expressed as a percentage: 
 

 PDM Number of Decision Matches
Number of Data Pairs

= . 

 
 P-6.1.2  For example, suppose the regulatory threshold to which the data will be com-
pared is fixed at 100 ppm. Suppose further that 100% of the data points from the screening tech-
nology are less than the threshold and the mean concentration is 50 ppm. Now, let us suppose 
that the definitive method of analysis systematically produces lower results and the mean con-
centration is 10 ppm. If both the screening data and the definitive data lead to the same conclu-
sion, namely, that all of the samples are less than the threshold, is the difference between the 
absolute values of the screening and definitive analyses of any real significance?  A PDM greater 
than 90% has historically been found to be acceptable to regulators in a number of differing ju-
risdictions. 
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APPENDIX Q 
Trend Analysis 

 
Q-1 Introduction. 
 
 Q-1.1  This Appendix presents tools for detecting and estimating trends in environmental 
data. Trends may be spatial or temporal and can take various forms, including steady increases or 
decreases or a steep increase or decrease at a point in time or space. Detecting and estimating 
temporal or spatial trends are important for many environmental studies or monitoring programs. 
In cases where temporal or spatial patterns are strong, simple procedures such as time plots or 
linear regression over time can reveal trends. In more complex situations, sophisticated statistical 
models and procedures may be needed. The detection of trends may be complicated by the over-
laying of long- and short-term trends, cyclical effects such as seasonal or weekly systematic 
variations, autocorrelations, or impulses or jumps from interventions or procedural changes. 
Trend is just one of several aspects of time series, the study of data with respect to time. Time se-
ries consists of trends, seasonal variation or seasonality, cyclical variation or repetitive trends, 
and irregular activity (Kvanli et al., 1996). 
 
 Q-1.2  The following subparagraphs present methods for detecting seasonal or temporal 
repetitive trends, correcting for seasonality, and testing procedures for trends using regression 
techniques and more robust trend estimation procedures. The investigations of trends in this Ap-
pendix are limited to one-dimensional domains, trends in a constituent concentration over time. 
This Appendix does not address spatial trends (with two- and three-dimensional domains) and 
trends over space and time (with three- and four-dimensional domains), which may involve so-
phisticated geostatistical techniques such as kriging (Appendix R). Gilbert (1987) and Gibbons 
(1994) provide additional resources for trend analysis. 
 
Q-2 Identifying Seasonality and Other Repetitive Trends.  Seasonality is one factor that 
accounts for changes in concentrations over time. Environmental monitoring data are likely to 
exhibit seasonality. According to Kvanli et al. (1996), seasonality is a predictable, periodic in-
crease or decrease that occurs within a time period or cycle, such as 1 year. The key to identify-
ing such trends is the repetition of the same pattern for each cycle. Identifying seasonality or 
other repetitive trends (i.e., persistent cyclic variations) is necessary before long-term increasing 
or decreasing temporal trends can be evaluated in environmental data. To identify these, a project 
team should visually inspect plots of data across time for seasonal or repetitive trends. Project 
teams should justify all seasonal trends identified visually with respect to site history, geology, 
chemistry, and professional judgment. 
 
 Q-2.1  Introduction.   
 
 Q-2.1.1  Generally, seasonality is not the primary focus of evaluating monitoring data for 
temporal trends. As such, data should be adjusted to remove the seasonal effects so that other 
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temporal trends may be studied. For instance, if groundwater concentrations are diluted every 
spring by high recharge, true changes in groundwater may be masked by this effect. Likewise, if 
low water flow in fall leads to higher concentrations in groundwater that do not represent more 
leaching from a source area, then these effects should be accounted for in data evaluation. Sea-
sonal effects may be removed by adjusting the sample data or using statistical methods unaf-
fected by such relations. Adjustments to the sample data are described in this Paragraph. The 
subsequent Paragraph provides details about statistical tests that account for data with seasonal 
variability. 
 
 Q-2.1.2  There are various methods to de-seasonalize data. If the seasonal pattern is regu-
lar, it may be modeled with a sine or cosine function. Moving averages can be used, or differ-
ences (of order 12 for monthly data, for example) can be used. However, time series models may 
include rather complicated methods for de-seasonalizing the data. A simpler method is presented 
in EPA 530-SW-89-026 for applications to any seasonal cycle. For environmental data, seasonal 
cycles typically occur annually, monthly, or quarterly. Directions for the EPA method are pre-
sented in Paragraph Q-2.2, followed by an example in Paragraph Q-2.3. Although EPA’s method 
assigns seasonality as a monthly cycle, this method can be applied with other seasonal or repeti-
tive cycles by replacing “monthly” with the appropriate cycle. 
 
 Q-2.2  Directions for Correcting Seasonality in Data.  To correct seasonality with time 
series data, directions are provided for monthly data that demonstrate a yearly cycle. 
 
 Q-2.2.1  Assume n years of monthly data are available. 
 
 Q-2.2.2  Let xij denote the unadjusted observation for the ith month and the jth year. 
 
 Q-2.2.3  Compute the average concentration for month i over the n-year period: 
 

 
n

xx
x ini

i
)...( 1 ++

= . 

 
This average represents the average of all observations taken in different years, but during the 
same month.  
 
 Q-2.2.4  Calculate the grand mean, x , of all 12 n observations: 
 

 ∑
=

=
12

1 12i

ix
x . 

 
 Q-2.2.5  Compute the adjusted concentrations,  
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xxxy iijij +−= . 
 
 Q-2.2.6  The difference iij xx −  removes the average effect of month i from the monthly 
data. The grand mean ( x ) must be added (on the right hand side of the equation) so that the 
mean of the adjusted yij values, y , is equal to the grand mean ( x ) of the unadjusted values. 
 
 Q-2.3  Correcting Seasonality with Time Series Data (Based on Monthly Data with a 
Yearly Cycle). Consider evaluating seasonality for the monthly average temperature (in degrees 
Fahrenheit) in Austin, Texas, from 1995 through 1998 (Table Q-1). A time plot of the data is 
presented in Figure Q-1. 
 
Table Q-1 
Monthly Average Temperature (°F) in Austin, Texas, from 1995 through 1998 

Month-
Year 

Tempera-
ture  

Month-
Year Temperature

Month-
Year 

Tempera-
ture 

Month-
Year Temperature

Jan-95 50.03  Jan-96 47.10 Jan-97 46.00 Jan-98 53.06 
Feb-95 53.00  Feb-96 53.38 Feb-97 50.15 Feb-98 52.21 
Mar-95 57.00  Mar-96 52.84 Mar-97 60.68 Mar-98 55.90 
Apr-95 62.23  Apr-96 62.77 Apr-97 59.57 Apr-98 62.70 
May-95 71.94  May-96 73.67 May-97 67.87 May-98 73.68 
Jun-95 74.23  Jun-96 77.13 Jun-97 74.97 Jun-98 79.60 
Jul-95 79.26  Jul-96 81.06 Jul-97 78.45 Jul-98 82.10 

Aug-95 78.45  Aug-96 77.42 Aug-97 77.94 Aug-98 80.19 
Sep-95 74.07  Sep-96 72.93 Sep-97 75.03 Sep-98 78.73 
Oct-95 66.06  Oct-96 66.13 Oct-97 65.84 Oct-98 68.10 
Nov-95 55.77  Nov-96 56.55 Nov-97 53.83 Nov-98 60.37 
Dec-95 51.37  Dec-96 51.93 Dec-97 47.50 Dec-98 49.81 

 
 Q-2.3.1  The plot indicates that seasonality plays a role in this data. There are 4=n  years 
of monthly data. The average temperature for each month and the grand average for all months 
are presented below:  

Month Average Temperature 
January 49.05 
February 52.19 
March 56.61 
April 61.82 
May 71.79 
June 76.48 
July 80.22 

August 78.50 
September 75.19 

October 66.53 
November 56.63 
December 50.15 

Grand Average 64.60 
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Figure Q-1. Monthly average temperature (°F) in Austin, 
Texas, from 1995 through 1998. 

 
 Q-2.3.2  The average January temperature is simply the average of all the January tem-
peratures, no matter the year: 
 

 05.49
4

06.5300.4610.4703.50
=

+++
=Januaryx . 

 
 Q-2.3.3  The other monthly averages are estimated in the same fashion. The grand aver-
age is simply the average of all of the monthly averages:  
 

60.64
12

15.5063.5653.6619.7550.7822.8048.7679.7182.6161.5619.5205.49
=

+++++++++++
=x  

 
 Q-2.3.4  The adjusted averages are presented in Table Q-2. The adjusted Jan-1995 tem-
perature, for example, was estimated by the following: adjusted temperature = 50.03 – 49.05 + 
64.60 = 65.58. Figure Q-2 is a plot of the adjusted temperatures. The vertical scale of the plot is 
the same as the plot of the adjusted data to emphasize that the seasonal variation has been 
smoothed out. 
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Table Q-2 
Adjusted Monthly Average Temperature (°F) in Austin, Texas, from 1995 through 1998 

Month-
Year 

Tempera-
ture 

Monthly 
average 

tempera-
ture 

Grand av-
erage tem-
perature 

Adjusted 
tempera-

ture Month-Year
Tempera-

ture 

Monthly 
average 

tempera-
ture 

Grand 
average 

tempera-
ture 

Adjusted 
tempera-

ture 
Jan-95 50.03 49.05 64.60 65.58 Jan-97 46.00 49.05 64.60 61.55 
Feb-95 53.00 52.19 64.60 65.41 Feb-97 50.15 52.19 64.60 62.56 
Mar-95 57.00 56.60 64.60 64.99 Mar-97 60.68 56.60 64.60 68.67 
Apr-95 62.23 61.82 64.60 65.01 Apr-97 59.57 61.82 64.60 62.35 
May-95 71.94 71.79 64.60 64.74 May-97 67.87 71.79 64.60 60.68 
Jun-95 74.23 76.48 64.60 62.35 Jun-97 74.97 76.48 64.60 63.08 
Jul-95 79.26 80.22 64.60 63.64 Jul-97 78.45 80.22 64.60 62.83 

Aug-95 78.45 78.50 64.60 64.55 Aug-97 77.94 78.50 64.60 64.03 
Sep-95 74.07 75.19 64.60 63.47 Sep-97 75.03 75.19 64.60 64.44 
Oct-95 66.06 66.53 64.60 64.13 Oct-97 65.84 66.53 64.60 63.90 
Nov-95 55.77 56.63 64.60 63.73 Nov-97 53.83 56.63 64.60 61.80 
Dec-95 51.37 50.15 64.60 65.81 Dec-97 47.50 50.15 64.60 61.95 
Jan-96 47.10 49.05 64.60 62.64 Jan-98 53.06 49.05 64.60 68.61 
Feb-96 53.38 52.19 64.60 65.79 Feb-98 52.21 52.19 64.60 64.62 
Mar-96 52.84 56.60 64.60 60.83 Mar-98 55.90 56.60 64.60 63.89 
Apr-96 62.77 61.82 64.60 65.55 Apr-98 62.70 61.82 64.60 65.48 
May-96 73.67 71.79 64.60 66.47 May-98 73.68 71.79 64.60 66.49 
Jun-96 77.13 76.48 64.60 65.25 Jun-98 79.60 76.48 64.60 67.71 
Jul-96 81.06 80.22 64.60 65.44 Jul-98 82.10 80.22 64.60 66.47 

Aug-96 77.42 78.50 64.60 63.52 Aug-98 80.19 78.50 64.60 66.29 
Sep-96 72.93 75.19 64.60 62.34 Sep-98 78.73 75.19 64.60 68.14 
Oct-96 66.13 66.53 64.60 64.20 Oct-98 68.10 66.53 64.60 66.16 
Nov-96 56.55 56.63 64.60 64.52 Nov-98 60.37 56.63 64.60 68.33 
Dec-96 51.93 50.15 64.60 66.37 Dec-98 49.81 50.15 64.60 64.25 

 
 Q-2.4  Summary.  Corrections for seasonality should be used with great caution because 
they represent extrapolation into the future. There should be good scientific explanation and 
good empirical evidence for the seasonality before corrections are made. For instance, larger 
than average rainfalls for two or three Augusts in a row does not justify the belief that there will 
never be a drought in August, and this idea extends directly to any monitoring system. In addi-
tion, the quality (bias, robustness, and variance) of the estimates of the proper corrections must 
be considered even in cases in which corrections are called for. If seasonality is suspected, ad-
justing for seasonality may not be necessary to evaluate long-term trends when appropriate sta-
tistical methods are utilized. Such methods will be discussed in the following Paragraph. 
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Figure Q-2. Adjusted monthly average temperature 
(°F) in Austin, Texas, from 1995 through 1998. 

 
Q-3 Methods for Trend Assessment. 
 
 Q-3.1  Introduction.  As a first step in evaluating trends, graphical representations are 
recommended to identify possible trends. A plot of the data versus time is recommended for 
temporal data, as it may reveal long-term trends and show other major types of trends, such as 
cycles or impulses. 
 
 Q-3.1.1  A posting plot is recommended for spatial data to reveal spatial trends such as 
areas of high concentration or areas that were inaccessible. (See Appendix J for further discus-
sion of posting plots.) Gilbert (1987) recommends smoothing time series to identify cycles and 
long-term trends that may be obscured by natural variation in the data. Gilbert also mentions us-
ing control charts as an effective graphical tool of trends. Control charts are presented at the end 
of this section. 
 
 Q-3.1.2  Most of the statistical tools presented below are applicable to environmental 
data; the focus is on monotonic, long-term trends (i.e., trends that are exclusively increasing or 
decreasing, but not both), as well as other sources of systematic variation, such as seasonality. 
 
 Q-3.1.3  There are numerous tests for trends. Trend tests, like other statistical tests, can 
be divided in terms of distributional assumptions. Parametric trend tests, which assume data fol-
low a normal distribution, involve regression-based methods for estimating trends and determin-
ing if a significant trend exists. Nonparametric trend tests, which do not make assumptions about 
the underlying data distributions, are based on the Mann-Kendall trend test. 
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 Q-3.1.4  Independence is crucial for parametric and nonparametric tests. The departure 
from independence (if data are correlated) can result in incorrect conclusions (Gibbons, 1994). 
To minimize the possibility that samples are not independent, Gibbons recommends a sampling 
frequency of no more than one sample per quarter. In practice, sampling frequency may be based 
on knowledge of site conditions such as groundwater flow rates. 
 
 Q-3.1.5  Regression-based methods usually are not recommended for environmental stud-
ies as a general tool for estimating and detecting trends, although they may be useful as a quick 
and easy-to-use screening tool for identifying strong linear trends. Regression analyses can be 
misleading if seasonal cycles are present, the data are not normally distributed, or the data are se-
rially correlated (Gilbert, 1987). In such cases, Gilbert suggests that the non-parametric seasonal 
Kendall test is preferable to regression methods. Non-parametric trend tests are more appropriate 
when data do not conform to a particular distribution and when there are data below the detection 
limit. For groundwater monitoring, Gibbons (1994) states that non-parametric analyses are the 
most reasonable estimators of trend. 
 
 Q-3.2  Regression-Based Methods.  Classic procedures for assessing linear trends use re-
gression. Linear regression is a common procedure in which calculations are performed on a data 
set containing pairs of observations (xi, yi). For temporal trends, the xi values represent time and 
the yi values represent the observations, such as contaminant concentrations. “If plots of data 
versus time suggest a simple linear increase or decrease over time, a linear regression of the vari-
able against time may be fit to the data. A t-test may be used to test that the true slope is not dif-
ferent from zero (Gilbert, 1987).” 
 
 Q-3.2.1  Regression procedures are easy to apply but entail several limitations and as-
sumptions. For example, simple linear regression (the most commonly used method) is designed 
to detect linear relationships between two variables; other types of regression models generally 
are necessary to detect non-linear relationships, such as cyclical or non-monotonic trends. Re-
gression is also very sensitive to extreme values (outliers) and presents difficulties in handling 
data below the detection limit, which are commonly encountered in environmental studies. 
 
 Q-3.2.2  A regression model is of the form: 
 
 εββ ++= XY 10  

 
where: 
 
 Y = response/dependent variable 
 X = independent/explanatory variable (e.g., time) 
 β0 = “true” intercept 
 β1 = “true” slope 
 ε  = random error. 
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 Q-3.2.3  If not for the random error, ε, all of the points ),( ii yx would lie precisely on the 
line XY 10 ββ += . The regression model assumes that the error is a normally distributed ran-
dom variable (ε) with a mean of zero and constant variance (i.e., the variance does not depend on 
X). In practice, β0 and β1 are unknown quantities and a set of n measured values ),( ii yx  is used 
to estimate a regression line of the form: 
 
 iii exbby ++= 10  
 
where b0 is an estimate of β0, b1 is an estimate of β1, and ei estimates εi. The slope and intercept 
can be estimated as follows: 
 

 1

0 1  .
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s
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 Q-3.2.4  The estimated “residuals” (ei) are calculated from the equation: 
 
 ei = yi – (b0 + b1 xi). 
 
 Q-3.2.5  Tests for normality (for example, normal probability plots as discussed in Ap-
pendix J) are required to verify the normality of the set of results {ei}. A plot of ei versus xi is re-
quired to verify that the variance of the residuals is constant (i.e., not dependent upon X). Figure 
Q-3 shows two commonly seen residual patterns. In Figure Q-3a, the residuals show no pattern, 
so the assumption of constant variance is met. In Figure Q-3b, the variance of the residuals in-
creases as the independent variable (X) increases so the assumption of constant variance is not 
met. Statistical software is often used to verify the normality of the residuals and constant vari-
ance because it is burdensome to do so manually. Moreover, the analyst must ensure that time 
plots of the data do not possess any cyclical patterns, outlier tests show no extreme data values, 
and data validation reports indicate that nearly all of the measurements are above detection lim-
its.  
 
 Q-3.2.6  Because of these limitations, regression is not recommended as a general tool for 
estimating and detecting trends, although it may be useful as a screening tool for identifying 
strong linear trends. For situations in which regression methods can be applied appropriately, a 
solid body of literature on hypothesis testing is available that uses the concepts of statistical lin-
ear models as a basis for inferring the existence of temporal trends. 
 
 Q-3.2.7  For simple linear regression, the statistical test of whether the slope is signifi-
cantly different from zero is equivalent to testing if the correlation coefficient is significantly dif-
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ferent from zero; that is, if r = 0, the slope b1 = 0 (for more details on the correlation coefficient 
test see Appendix O). Directions are provided in Paragraph O-2.2, followed by an example in 
Paragraph O-2.3. 
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Figure Q-3.  Residuals versus the independent variable. 

 
 Q-3.2.8  This test assumes a linear relation between X and Y with independent, normally 
distributed errors and constant variance across all X and Y values. Censored values (below the 
detection limit) and outliers may invalidate the tests. 
 
 Q-3.2.9  If a linear trend is present, based on visual inspection or results from testing for 
trends, the true slope (change per unit time) may be estimated. An estimate of the magnitude of 
trend can be obtained by performing a regression of the data versus time (or some function of the 
data versus some function of time) and using the slope of the regression line that best fits the data 
as a measure of strength in the trend. 
 
 Q-3.3  Non-parametric Methods.   
 
 Q-3.3.1  Introduction.  Kendall’s tau (Appendix O) can be used to evaluate trends. An al-
ternative method is presented here to use for a single set of observations, x1, x2,..., xn, which have 
been ordered by time of measurement. The test statistic S is calculated by:  
 
 −+ −= SSS  
 
where +S  is the number of pairs ( )ji xx ,  with ji <  and ji xx < . Likewise, −S  is the number of 
pairs ( )ji xx ,  with ji <  and ji xx > .  
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 Q-3.3.1.1  It can be shown that there are a total of ( ) 21−nn  possible pairwise compari-
sons for a set of n pairs ( )ji xx , . The sample statistic Kendal1’s tau,τ , is: 
 

 ( ) 21−
=

nn
Sτ  

 
Note that differences of zero are not included in the test statistic (and should be avoided, if pos-
sible, by recording data to sufficient accuracy). However, an adjustment for ties may be made 
(i.e., when many ties occur), for a series of measurements x1, x2,..., xn performed sequentially in 
time, by calculating Kendall’s tau-b, τb: 
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The quantity Xn′  is the number of tied pairs (xi, xj), where j > i, for i  = 1, 2, … n. The tie adjust-
ment increases the magnitude of Kendall’s tau and is useful for evaluating trends (or correlation) 
when measurements are censored. 
 
 Q-3.3.1.2  The Mann-Kendall test does not assume any particular data distribution and 
accommodates censored values. Non-detected results should be assigned a value smaller than the 
lowest measured value when the detection limit is small. Otherwise, when calculating S, pairs of 
results such as (3, <10), (<3, <10), and (<3, <3) should be considered to be ties and assigned a 
value of zero. For example, for the set of n = 4 sequential measurements {30, <10, < 20, <25}, 
the number of tied pairs 3=′Xn  for the calculation of τb: (<10, <20), (<10, <25), and (<20, <25). 
As the test only depends upon signs of differences between data points (or the ranks), informa-
tion about magnitude of these differences is not used. As such, the test possesses less power than 
its parametric counterpart, Pearson’s r (i.e., a larger number of data points are required to iden-
tify a correlation using Kendall’s tau). However, Mann-Kendall is advantageous because as-
sumptions about the underlying data distribution are not required, and it is more robust (i.e., 
insensitive) than a parametric test to outliers and censored values. Kendall’s tau is also invariant 
with respect to monotonic transformations of the variable X. For example, the value of τ calcu-
lated for X will be identical to that calculated for Ln(X). 
 
 Q-3.3.1.3  Conducting the Mann-Kendall test for small sample sizes is appropriate for 
data with fewer than 40 samples (Gilbert, 1987); the EPA suggests using this method with data 
sets having fewer than 10 samples. If the number of samples becomes too large, the calculations 
become cumbersome by hand. Directions for the Mann-Kendall trend test for a small sample size 
(less than 10 samples) are presented in Paragraph Q-3.3.2, followed by an example in Paragraph 
Q-3.3.3. 
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 Q-3.3.1.4 The Mann-Kendall test is essentially a significance test under the hypothesis γ 
= 0 (refer to Appendix O). A trend exists if the sample statistic τ  is significantly different from 
zero at some specified level of confidence. If there is an underlying upward trend, the differences 
will tend to be positive (S will be a large value), so a sufficiently large positive value of the sam-
ple statistic τ (e.g., a value near 1) suggests an upward trend. Conversely, if the differences tend 
to be negative (S will be a large negative value), a sufficiently large negative value of τ  (e.g., a 
value near –1) suggests a downward trend. If the statistic τ  is nearly zero (i.e., not significantly 
different from zero), there is no evidence of a trend. The slope of the time-ordered data plotted 
versus time is zero. The significance test for γ = 0 is a nonparametric test for zero slope (Gilbert, 
1987). For a two-sided test the null and alternative hypotheses are:  
 
 0:0 =γH : No upward or downward trend. 
 
 0: ≠γAH : An upward or downward trend. 
 
For a one-sided test 
 
 0:0 ≤γH  (or 0≥γ ): No upward (or no downward trend). 
 
 0: >γAH  (or 0<γ ): An upward trend (or a downward trend). 
 
 Q-3.3.1.6 In practice, it is not convenient to calculate a value of τ for the data set and to 
compare this to a critical value of τ for the desired level of significance, τp (so that, for example, 
if τ > τp, there is an increasing trend at the p100% level of confidence). The calculations for the 
Mann-Kendall test are done differently for large versus small data sets. For small data sets (Para-
graph Q-3.3.2), the value of S for the data set (rather than τ) is calculated and compared to a 
critical value of S taken from a statistical table. For large data sets, the standard normal distribu-
tion is used to determine the statistical significance of τ (Paragraph Q-3.3.4). 
 
 Q-3.3.1.7  Note that irregularly spaced measurement periods are permitted with the 
Mann-Kendall test (Gibbons, 1994). The test can also be modified to deal with multiple observa-
tions per time period and generalized to deal with multiple sampling locations and seasonality 
(Gilbert, 1987). The Mann-Kendall test for the situation in which one observation per time pe-
riod is taken from one sampling location (e.g., groundwater monitoring well) is presented in 
Paragraph Q-3.3.2. 
 
 Q-3.3.1.8  For large sample sizes, the normal approximation to the Mann-Kendall test is 
used. If there are more than 10 samples, as long as there are not many tied data values, Gilbert 
(1987) suggests this normal approximation is quite accurate. Directions for this approximation 
are provided in Paragraph Q-3.3.2.4, followed by an example in Paragraph Q-3.3.2.5. Tied ob-
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servations (when two or more measurements are equal) degrade the statistical power and should 
be avoided, if possible, by recording the data to sufficient accuracy. If the sample size is 10 or 
more, a normal approximation to the Mann-Kendall procedure may be used. 
 
 Q-3.3.2  Directions for the Mann-Kendall Trend Test for a Small Sample Size.  List the 
data in the order collected over time: nxxx ,,, 21 K where ix  is the datum at time it .  
 
 Q-3.3.2.1  Assign a proxy value to values reported as below the detection limit (DL). 
Note that this proxy value should be less than any measured value. Construct a Data Matrix simi-
lar to the top half of the Table Q-3. 
 
 Q-3.3.2.2  Determine the sign for each possible difference and compute the Mann-
Kendall statistic, S, which is the number of positive signs minus the number of negative signs in 
the triangular table: S = S + (i.e., total number of + signs) – S – (i.e., total number of – signs). 
 
 Q-3.3.2.3  Use Table B-10 of Appendix B to determine the probability (p) using the sam-
ple size (n) and the absolute value of the statistic S if 10≤n .  

 
 Q-3.3.2.3.1  For testing H0, no trend against HA: upward trend, reject H0 if S > 0 and p < 
α.  
 
 Q-3.3.2.3.2  For testing H0, no trend against HA: downward trend, reject H0 if S < 0 and p 
< α. 
 
 Q-3.3.2.4  Table Q-3 presents the resulting matrix of differences when applying the steps 
above.  
 
Table Q-3 
Basic Mann-Kendall Trend Test with a Single Measurement at Each Time Point 

Time 
xi 

t2 
x2 

t3 
x3 

t4 
x4 

. . . 

. . . 
tn-1 
xn-1 

tn 
xn 

No. of Differ-
ences > 0 

No. of Differ-
ences < 0  

x1 x2 – x1 x3 – x1 X4 – x1 . . . xn-1 – x1 xn – x1   
x2  x3 – x2 X4 – x2 . . . xn-1 – x2 xn – x2   
     . .   
     . .   
.     . .   

xn-2     xn-1 – xn–2 xn – xn-2   
xn-1      xn - xn–1   

Total       (S +) (S –) 
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 Q-3.3.2.5  The number of positive and negative differences are recorded for each row 
(two right most columns) and the values (within the two right most columns) are summed to ob-
tain S+ and S–. Differences equal to zero are ignored. 
 
 Q-3.3.3  Example of a Mann-Kendall Trend Test for Small Sample Sizes (n < 10).  Evalu-
ate the linear trend of benzene taken from quarterly groundwater samples at well MW01 in Site 
A from 2000–2001.  
 
 Q-3.3.3.1  Benzene has been detected during all of these sampling events, so no proxy 
concentrations were derived. At the 90% level of confidence ( 10.0=α ), test: 
 
 H0: No trend; HA: Downward trend. 
 
 Q-3.3.3.2  Figure Q-4 is a plot of the concentrations over time. It does appear that a 
downward trend is present. This test, though, will identify if a statistically significant trend is 
present (Table Q-4). 
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Figure Q-4.  Trend for benzene in groundwater (small 
sample size). 
 

 Q-3.3.3.3  The Mann-Kendall test statistic, S = 5 – 16 = –11. 
 
 Q-3.3.3.4  Using Table B-10 of Appendix B, the p value for n = 7 and |S| = 11 is p = 
0.068. 
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 Q-3.3.3.5  As S < 0 and p < α = 0.10, we reject 0H  and conclude there is significant evi-
dence of a downward trend. 
 
 Q-3.3.4  Directions for a Normal Approximation to the Mann-Kendall Test Procedure. 
List the data in the order collected over time. Assign a proxy value to values reported as below 
the DL. Note that this proxy value should be lower than any measured value. Construct a Data 
Matrix similar to the top half of the data table below (Table Q-5). 

 
Table Q-4 
"Upper Triangular" Data for Basic Mann-Kendall Trend Test with a Single Measurement 
at Each Time Point—Data Table 

Time 7/00 10/00 1/01 5/01 7/01 11/01 

xi 2.68 6.17 0.64 2.19 1.72 1.15 

No. of Differ-
ences  
> 0 

No. of Differ-
ences  
< 0 

x1 = 4.3 –1.62 1.87 –3.66 –2.11 –2.58 –3.15 1 5 
x2 = 2.68  3.49 –2.04 –0.49 –0.96 –1.53 1 4 
x3 = 6.17   –5.53 –3.98 –4.45 –5.02 0 4 
x4 = 0.64    1.55 1.08 0.51 3 0 
x5 = 2.19     –0.47 –1.04 0 2 
x6 = 1.72      –0.57 0 1 

Total       5 16 

 
Table Q-5 
Data for Example Q-3.3.5 

Jun-98 
Apr-

98 Jul-98 Oct-98 Apr-99 
Jul-
99 Oct-99 Apr-00 

Jul-
00 Oct-00 Jan-01 May-01 

Jul-
01 Nov-01 

(Time: earliest 
to latest) 

Benzene concen-
trations 

xi 

 
3.79 
 

3.42 
 

5.47 
 

0.81 
 

1.78 
 

7.56 
 

4.3 
 

2.68 
 

6.17 
 

0.64 
 

2.19 
 

1.78 
 

1.15 
 

#of + 
Diff. 

#of – 
Diff. 

12.2 –8.41 –8.78 –6.73 –11.4 –10.4 –4.6 –7.9 –9.52 –6.0 –11.6 –10.0 –10.4 –11.1 0 13 
3.79  –0.37 1.68 –2.98 –2.01 3.77 0.51 –1.11 2.38 –3.15 –1.6 –2.01 –2.64 4 8 
3.42   2.05 –2.61 –1.64 4.14 0.88 –0.74 2.75 –2.78 –1.23 –1.64 –2.27 4 7 
5.47    –4.66 –3.69 2.09 –1.17 –2.79 0.7 –4.83 –3.28 –3.69 –4.32 2 8 
0.81     0.97 6.75 3.49 1.87 5.36 –0.17 1.38 0.97 0.34 8 1 
1.78      5.78 2.52 0.90 4.39 –1.14 0.41 0.00 –0.63 5 2 
7.56       –3.26 –4.88 –1.39 –6.92 –5.37 –5.78 –6.41 0 7 
4.3        –1.62 1.87 –3.66 –2.11 –2.52 –3.15 1 5 
2.68         3.49 –2.04 –0.49 –0.90 –1.53 1 4 
6.17          –5.53 –3.98 –4.39 –5.02 0 4 
0.64           1.55 1.14 0.51 3 0 
2.19            –0.41 –1.04 0 2 
1.78             –0.63 0 1 
1.15            Total 28 62 

 
 Q-3.3.4.1  Compute the sign of all possible differences as shown in the bottom portion of 
Table Q-5. 



EM 1110-1-4014 
15 Jan 07 
 

Q-15 

 
 Q-3.3.4.2  Compute the Mann-Kendall statistic, S, as shown in Paragraph Q-3.3.2. S is 
the number of positive signs minus the number of negative signs in the triangular table: 

−+ −= SSS . 
 
 Q-3.3.4.3  If there are no ties, calculate the variance of S: 
 

 18
)52)(1()( +−

=
nnnSV

. 

 
 Q-3.3.4.4  If ties occur, let g represent the number of tied groups and wj represent the 
number of data points in the jth tied group. For ties, the variance of S is: 
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 Q-3.3.4.5  Calculate the following statistic: 
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 Q-3.3.4.6  Note that tied values do not affect the calculation of S but affect only V(S) and 
the calculation of z using the large sample approximation. 
 
 Q-3.3.4.7  Use Table B-15 of Appendix B to find the critical value α−1Z  (if testing H0: No 
trend against HA: Upward trend) or the critical value α−− 1Z  (if testing H0, no trend against HA: 
downward trend) such that (1 – α )100% of the normal distribution lies to the left of α−1Z .  
 
 Q-3.3.4.7.1  For testing H0, no trend against HA: upward trend, reject H0 if z > α−1Z . 
 
 Q-3.3.4.7.2  For testing H0, no trend against HA: downward trend, reject H0 if z < α−− 1Z . 
 
 Q-3.3.5  Example of The Mann-Kendall Procedure Using Normal Approximation for 
Larger Samples.  Consider evaluating whether or not there is a significant trend for benzene us-
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ing a set of samples taken from quarterly groundwater samples at well MW01 in Site A from 
1998–2001. Benzene has been detected during all of these sampling events, so no proxy concen-
trations were derived.  
 
 Q-3.3.5.1  Test H0, no trend against HA: downward trend based on a 90% level of confi-
dence ( 10.0=α ). 
 
 Q-3.3.5.2  Figure Q-5 is a plot of the concentrations over time. It does appear that a 
downward trend is present (Table Q-5).  
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Figure Q-5.  Trend for benzene in groundwater 
(large sample size). 
 

 Q-3.3.5.3  The Mann-Kendall statistic, S = 28 – 62 = –34. 
 
 Q-3.3.5.4  Since there are two observations with a value of 1.78, there are g = 1 tied 
groups and w1 = 2. The calculated variance of S is 
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 Q-3.3.5.5  Because S < 0, the approximate z test statistic is  
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 Q-3.3.5.6  Using Table B-15 of Appendix B, find the critical value 28.190.0 −=− Z .  
 
 –1.809 < –1.28, so we can reject H0. 
 
 Q-3.3.5.7  That means there is significant evidence of a downward trend.  
 
 Q-3.3.6  Multiple Observations.  Often, more than one sample is collected for each time 
period. There are two ways to deal with such multiple observations. One method is to compute a 
summary statistic, such as the median, for each time period and to apply one of the Mann-
Kendall trend tests to the summary statistic. The summary statistic would be used instead of the 
individual data points in the triangular table. The steps given for the Mann-Kendall for small 
sample sizes or larger samples could then be applied to the summary statistics.  
 
 Q-3.3.6.1  An alternative approach is to consider all of the multiple observations within a 
given time period as being essentially equal (tied) values within that period. The S statistic is 
computed as before, with n being the total of all observations. The variance of the S statistic is 
changed to: 
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where g represents the number of tied groups (i.e., number of groups that have tied observa-
tions), wj represents the number of data points in the tied jth group, h is the number of time peri-
ods that contain multiple data, and uk is the sample size in the kth time period where k = 1, 2, …, 
h. For example, let four X measurements be made for the first time period, three for the second, 
two for the third, and one for each of the subsequent time periods. The value of h will be 3 for 
the three time periods with multiple measurements, and the value of uk will be 4, 3, and 2 for k = 
1, 2, and 3 respectively. The values of g and wj will depend on actual X measurements. For the 
special case of ties and multiple measurements for a time period, the reader is referred to Gilbert 
(1987). 
 
 Q-3.3.6.2  The preceding variance formula assumes that the data are not correlated. If 
correlation within single time periods is suspected, it is preferable to use a summary statistic (i.e., 
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the median) for each period and then apply either the Mann-Kendall for small sample sizes or 
larger samples to the summary statistics. 
 
 Q-3.3.6.3  The preceding methods involve a single sampling location (station). However, 
environmental data often consist of sets of data collected at several sampling locations (e.g., 
groundwater monitoring wells). For example, data are often systematically collected at several 
fixed sites on a lake or river, or within a region or basin. The data collection plan (or experimen-
tal design) must be systematic in the sense that approximately the same sampling times should be 
used at all locations. In this situation, it may be desirable to simultaneously evaluate all of the 
sampling locations for the presence of a common characteristic or “regional trend.” However, 
there must be consistency in behavioral characteristics across sites over time for a single sum-
mary statement to be valid across all sampling locations. A useful plot to assess the consistency 
requirement is a single time plot of the measurements from all stations in which a different sym-
bol is used to represent each station. Paragraph Q-3.3.7 illustrates such data sets. 
 
 Q-3.3.6.4  If the stations exhibit approximately steady trends in the same direction (up-
ward or downward), with comparable slopes, a single summary statement across stations is valid, 
implying that two relevant sets of hypotheses should be investigated. 
 
 Q-3.3.6.4.1  Comparability of Stations.  
 
 H0: The trends at all K stations are homogeneous.  
 
 HA: At least two stations exhibit different dynamics. 
 
 Q-3.3.6.4.2  Testing for Overall Monotonic Trend.  
 
 :0

∗H Contaminant levels do not change over time.  
 
 ∗

AH : There is an increasing or decreasing trend consistently exhibited across all stations. 
 
 Q-3.3.6.5  Therefore, the analyst must first test for homogeneity of stations and then, if 
homogeneity is confirmed, test for an overall monotonic trend. 
 
 Q-3.3.6.6  Ideally, the stations should have equal numbers. However, the numbers of ob-
servations at the stations can differ slightly because of isolated missing values, but the overall 
time periods spanned must be similar. The EPA recommends that an equal number of observa-
tions (a balanced design) be required for fewer than three time periods. For four or more time pe-
riods, up to one missing value per sampling location may be tolerated. 
 
 Q-3.3.6.7  When only one measurement is taken for each time period for each station, a 
generalization of the Mann-Kendall statistic can be used to test the above hypotheses. Directions 
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for this condition are presented in Paragraph Q-3.3.8, followed by an example in Paragraph Q-
3.3.9. 
 
 Q-3.3.6.8  Gilbert (1987) states: “The validity of these chi-squared tests depends on each 
of the zk values having a standard normal distribution. [T]his implies that the number of data 
(over time) for each station should exceed 10. Also, the validity of the tests requires that the zk 
values be independent, meaning data from different stations must be uncorrelated.” 
 
 Q-3.3.6.9  If multiple measurements are taken at some time and station, the previous ap-
proaches are still applicable. However, the variance of the statistic Sk must be calculated using 
the equation for calculating V(S) based on multiple observations within a given time period. Note 
that Sk is computed for each station, so n, wj, g, h, and uk are all station-specific. 
 
 Q-3.3.7  Illustration of Data Taken from Multiple Stations and Multiple Times.  Let i = 1, 
2,..., n represent time, let k = 1, 2,..., K represent sampling locations or stations, and xi,k represent 
the measurement at time i for location k. These data can be summarized in matrix form, as shown 
below: 
 

 Station 
  1 2 … K 
 1 x1,1 x2,1 … xK,1 
 2 x1,2 x2, 2 … xK,2 

Time . . . … . 
 . . . … . 
 . . . … . 
 n x1,n x2,n … xK,n 
  S1 S2 … SK 
  V(S1) V(S2) … V(SK) 
  z1 z2 … zK 

 
where 
 Sk, = Mann-Kendall statistic for station k 
 V(Sk) = variance for S statistic for station k 
 zk = ( )k kS V S . 
 
 Q-3.3.8  Directions for the Mann-Kendall Statistic Used to Test a Monotonic Trend.  Let 
i = 1, 2,..., n represent time, k = 1, 2,..., K represent sampling locations or stations, and xi,k repre-
sent the measurement at time i for location k. Let α represent the significance level for testing 
homogeneity and α* represent the significance level for testing an overall trend. 
 
 Q-3.3.8.1  Calculate the Mann-Kendall statistic Sk and its variance V(Sk) for each of the K 
stations using the methods for larger sample sizes. 
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 Q-3.3.8.2  For each of the K stations, calculate  
 
 )( kkk SVSz = . 
 
 Q-3.3.8.3  Calculate the average 
 

 ∑
=

=
K

k
k Kzz

1
. 

 
 Q-3.3.8.4  Calculate the homogeneity chi-square statistic  
 

 ∑
=

−=
K

k
kh zKz

1

222 )(χ . 

 
 Q-3.3.8.5  Using a chi-squared table, find the critical value, 2

,1 ναχ −  the (1 – α)100th per-
centile of the chi-squared distribution with 1−= Kν  degrees of freedom. 
 
 Q-3.3.8.5.1  If 2

,1
2

ναχχ −>h , the stations are not homogeneous (have different dynamics at 
different stations) at the significance level α. Therefore, individual α*-level Mann-Kendall tests 
should be conducted at each station using the methods presented previously. That is, test each of 
the K wells individually as described in Paragraphs Q-3.3.3 or Q-3.3.5. 
 

 Q-3.3.8.5.2  If 2
,1

2
ναχχ −≤h , there are comparable dynamics across stations at significance 

level α . Using a chi-squared table, find the critical value for the chi-squared distribution with 1 
degree of freedom at the *α  significance level, 2

1*,1 αχ − .  
 
 Q-3.3.8.6  If 2

1*,1
2

αχ −>zK , then reject ∗
0H  and conclude that there is a significant (up-

ward or downward) monotonic trend across all stations at significance level *α . The signs of 
the Sk indicate whether increasing or decreasing trends are present.  
 
 Q-3.3.8.7  If 2

1*,1
2

αχ −≤zK , there is not significant evidence at the *α  level of a mono-
tonic trend across all stations; that is, the stations appear approximately stable over time.  
 
 Q-3.3.9  Example of Comparability of Stations and an Overall Monotonic Trend.  The 
following wells at Site A are to be evaluated to determine if the benzene concentrations show de-
creasing trends consistently across these wells based on a 95% level of confidence. Data for ben-
zene at these wells are shown in the Table Q-6. The flag “ND” is applied to sample for which 
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benzene was not detected. For non-detected concentrations, proxy values are presented in the ta-
ble and are set to the sample’s detection limit. 
 
 Q-3.3.9.1  For this example, 3=K . 
 
 Q-3.3.9.2  The average of the z values is  
 
 2737.03/)135.2040.1916.1( −=+−−=z . 
 
 Q-3.3.9.3  The homogeneity chi-square statistic is  
 

 [ ] 086.9)2737.0(3)135.2()040.1()916.1()( 2222

1

222 =−−+−+−=−= ∑
=

K

k
kh zKzχ . 

 
 Q-3.3.9.4  The critical value is 991.52

2,95.0 =χ , with 21 =−= Kν degrees of freedom and 
95% level of confidence (from Table B-2 of Appendix B).  
 
 Q-3.3.9.5  Because 2

2,95.0
2 χχ ≥h , the stations are not homogeneous based on a 95% level 

of confidence, and each should be tested using the technique presented in Paragraph Q-3.3.5 as n 
> 10.  
 

Table Q-6 
Benzene Data for Example Q-3.3.9 

Well (Site A)  
Time MW01 MW03 MW05 

1 12.2  0.062 ND 2.17  
2 3.79  1.78  2.75  
3 3.42  0.04 ND 6.91  
4 5.47  2.31  8.64  
5 0.81  7.24  11.0  
6 1.84  1.85  14.1  
7 7.56  0.31  3.45  
8 4.30  2.00  36.7  
9 2.68  0.14  20.2  

10 6.17  0.23  8.34  
11 0.64  0.065 ND 17.0  
12 2.19  0.76  21.8  
13 1.72  0.22  2.01  
14 1.15  0.05 ND 29.1  
Sk –35 –19 39 

V(Sk) 333.7 333.7 333.7 
zk –1.916 –1.040 2.135 
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 Q-3.3.10  Multiple Observations over Extended Time Periods.  Temporal data are often 
collected over extended time periods. Within the time variable, data may exhibit periodic cycles, 
patterns in the data that repeat over time. For example, temperature and humidity may change 
with the season or month and affect environmental measurements. For this discussion, the term 
“season” represents one time point in the periodic cycle, such as a month within a year or an 
hour within a day. There are two approaches for testing for trends—the seasonal Kendall test and 
Sen’s test for trends—if seasonal cycles are anticipated. The seasonal Kendall test may be used 
for large sample sizes, and Sen’s test for trends may be used for small sample sizes. In either 
case, the data are analyzed separately by season, and the results are compared among seasons. 
Both of these estimation techniques are described below. If different seasons manifest similar 
slopes (rates of change) but different intercepts, the Mann-Kendall technique for multiple sam-
pling locations with multiple observations is applicable, replacing station by season. For exam-
ple, Figure Q-6 shows a time plot of a series that appears to be decreasing although it is 
somewhat masked by a seasonal cycle that repeats every four time periods. The data could be 
analyzed by the Mann-Kendall technique presented in Paragraph Q-3.3.8 if they are broken out 
by season (e.g., data points 1, 5, 9, 13, and 17 would constitute one season series). 
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Figure Q-6. Time plot of seasonal series with decreas-
ing trend. 

 
 Q-3.3.10.1  For data with seasonality, the seasonal Kendall test, an extension of the 
Mann-Kendall test, involves calculating the Mann-Kendall test statistic, S, and its variance sepa-
rately for each “season” (e.g., month of the year, day of the week). The sum of the S’s and the 
sum of their variances are then used to form an overall test statistic that is assumed to be ap-
proximately normally distributed for larger size samples. 
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 Q-3.3.10.2  For data at a single site, collected at multiple seasons within multiple years, 
the techniques for multiple sampling locations with multiple observations can be used to test for 
homogeneity of time trends across seasons. The methodology follows the explanation below of 
Sen’s slope estimator exactly, except “station” is replaced by “season” and the inferences refer to 
seasons. 
 
 Q-3.3.10.3  If a linear trend is observed when some variable of interest is plotted against 
time, based on a visual inspection or the results of a statistical test for a trend, the magnitude of 
the slope of the line is a measure of the “strength” of the trend and the sign of the slope provides 
the direction of the trend. The true slope (change per unit time) may be estimated using a para-
metric or non-parametric method. Linear regression analysis is a parametric method for estimat-
ing a slope. Sen’s slope estimator is a non-parametric method for estimating the slope of a line.  
 
 Q-3.3.10.4  This approach involves computing slopes for all pairs of ordinal time points 
and using the median of these slopes as an estimate of the overall slope. As such, it is insensitive 
to outliers and can handle a moderate number of values below the detection limit and missing 
values. 
 
 Q-3.3.10.5  Directions are presented in Paragraph Q-3.3.11, followed by an example in 
Paragraph Q-3.3.12. 
 
 Q-3.3.11  Directions for a Sen’s Slope Estimator.  Assume that there are n time points (or 
n periods of time), and let xi denote the data value for the ith

 time point. If there are no missing 
data, there will be 2/)1(' −= nnN possible pairs of time points (i, j), in which i > j (i.e., xi was 
taken at a time after the measurement xj).  
 
 Q-3.3.11.1  For non-detected results, the detection limit may be used as the data value 
(Gibbons, 1994) or one-half the detection limit may be used as the data value (Gilbert, 1987). 
Note that this proxy value should be lower than any measured value. 
 
 Q-3.3.11.2  Define the slope for each pair, called a pairwise slope, as  
 

 
)(

)(
ji
xx

b ji
ij −

−
= .  

 
 Q-3.3.11.3  Sen’s slope estimator is the median of the n(n – 1)/2 pairwise slopes. 
 
 Q-3.3.12  Example of a Sen’s Slope Estimator.  The Sen’s slope estimate is calculated to 
evaluate the linear trend for benzene in Paragraph Q-3.3.3 (seven groundwater samples collected 
quarterly from 2000–2001 from well MW01 at Site A). Because benzene was detected for all the 
sampling events, proxy concentrations were not derived. 
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 Q-3.3.12.1  There are 7(6)/2 = 21 possible pairs of time points (i, j) in which i > j. The 
slope for each pair will be estimated and displayed in a data matrix similar to the one presented 
in Paragraph Q-3.3.3, except each cell in the matrix represents the pairwise slope  
 

 
)(

)(
ji
xx

b ji
ij −

−
= . 

 
 Q-3.3.12.2  If there is no underlying trend, then a given xi is just as likely to be above an-
other xj as it is to be below. If there is no underlying trend, there would be an approximately 
equal number of positive and negative slopes and Sen’s slope would be near zero. 
 
 Q-3.3.12.3  If the data exhibit cyclic trends, the Sen’s slope estimator can be modified to 
account for the cycles. For example, if data are available for each month for a number of years 
and the length of a cycle is one year, 12 separate sets of slopes would be determined (one for 
each month of the year using all of the data for that particular month); similarly, if daily observa-
tions exhibit weekly cycles, seven sets of slopes would be determined, one for each day of the 
week. In these estimates, the above pairwise slope is calculated for each time period and the me-
dian of all of the slopes is an estimator of the slope for a long-term trend. This is known as the 
seasonal Kendall slope estimator, which is rarely calculated by hand owing to the number of cal-
culations required. 
 
Table Q-6 
Pairwise Slopes Data Table 
 Original Time 

Measure 
t1=4/00 
x1=4.3 

t2=7/00 
x2=2.68 

t3=10/00 
x3=6.17 

t4=1/001 
x4=0.64 

t5=5/01 
x5=2.19 

t6=7/01 
x6=1.72 

t7=11/01 
x7=1.15 

 x1=4.3  –1.62 0.935 –1.22 –0.528 –0.516 –0.525 
 x2=2.68   3.49 –1.02 –0.163 –0.24 –0.306 
 x3=6.17    –5.53 –1.99 –1.483 –1.255 
 x4=0.64     1.55 0.54 0.17 
 x5=2.19      –0.47 –0.52 
 x6=1.72       –0.57 
 x7=1.15        
         

–5.53 –1.99 –1.62 –1.483 –1.255 –1.22 –1.02 
–0.57 –0.528 –0.525 –0.52 –0.516 –0.47 –0.306 

Ordered pairwise 
slopes (smallest to 
largest): –0.24 –0.163 0.17 0.54 0.935 1.55 3.49 

 
 Q-3.3.12.4  The median of these 21 pairwise slopes is –0.52, the 11th ordered result when 
the results are sorted from smallest to largest. 
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 Q-3.3.13  Testing a Trend Using Confidence Limits for Sen’s Slope Estimator.  Gilbert 
(1987) presents a simple method, based on the normal distribution, to estimate the (1 – α)100% 
confidence interval about the true slope. This “large sample” estimate is appropriate for data sets 
with at least 10 samples. Directions for estimating such confidence intervals are presented below. 
Aside from estimating the confidence limits for the slope associated with a trend that has been 
previously identified (e.g., using Mann-Kendall’s test), this approach can be used to determine if 
a trend is presented. If the confidence interval for the slope contains zero, there is no evidence of 
an underlying trend. However, if the confidence interval does not contain zero, there is evidence 
to suggest a trend. Directions are presented in Paragraph Q-3.3.14, followed by an example in 
Paragraph Q-3.3.15. 
 
 Q-3.3.14  Directions for Creating Confidence Limits for Sen’s Slope Estimator.  Compute 

2/)1(' −= nnN  if there is just one result in each time period, and ='N  the number of possible 
data pair combinations among the time periods (and results from the time period cannot be con-
sidered data pairs) if there is more than one result in each time period. 
 
 Q-3.3.14.1  Based on the desired two-sided confidence level (1 – α)100%, find 2/1 α−Z . 
 
 Q-3.3.14.2  Compute the variance of S as  
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when one observation per time period is available (g represents the number of tied groups and wj 
represent the number of data points in the jth group) or  
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when multiple observations per time period are available (g represents the number of tied groups, 
wj represents the number of data points in the jth group, h is the number of time periods contain-
ing multiple data, and uk is the sample size in the kth time period). 
 
 Q-3.3.14.3  Compute )(2/1 SVZC αα −= . 
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 Q-3.3.14.4  Compute 2)'(1 αCNM −= and 2)'(2 αCNM += . 
 
 Q-3.3.14.5  The lower and upper limits of the confidence interval are the M1

th largest and 
(M2 + 1)th largest of the N´ ordered slope estimates (from lowest to highest), respectively. If M1 
and M2 + 1 are not whole numbers, use linear interpolation (Gilbert, 1987). 
 
 Q-3.3.15  Example of Confidence Limits for Sen’s Slope Estimator.  Consider estimating 
a two-sided 95% confidence interval for Sen’s slope estimated in Paragraph Q-3.3.12, where: 
 
 n = 7, 52.0−=S  and 212/)1(' =−= nnN  . 
 
 Q-3.3.15.1  For α = 0.05, 96.1975.02/1 ==− ZZ α  . 
 
 Q-3.3.15.2  The following are calculated: 
 

 [ ] 33.440)19)(6(7
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 05.1333.4496.1)(2/1 === − SVZC αα  
 
 975.32/)05.1321(2)'(1 =−=−= αCNM  
 
 025.172/)05.1321(2)'(2 =+=+= αCNM . 
 
 Q-3.3.15.3  From the list of ordered results in Paragraph Q-3.3.15 , the interpolated value 
between the 3rd and 4th ordered result is –1.486 and the interpolated value between the 18th (17 + 
1) and 19th ordered result is 0.550. Therefore, the confidence interval for the slope is (–1.486, 
0.550). As this interval contains zero, there is insufficient evidence of an underlying trend (even 
though the slope of –0.52 suggests a negative trend). 
 
Q-4 Control Charts. 
 
 Q-4.1  Introduction.  Control charts are a quality control procedure that can be applied to 
environmental monitoring data, such as data from air or groundwater monitoring systems. Con-
trol charts provide a visual means of monitoring constituent concentrations at a given well or lo-
cation over time, identifying slight or sudden fluctuations over time and detecting deviations 
from a “state of control.” A process is in-control if the observed variation is attributable to small, 
uncontrollable changes. A process is out-of-control if a relatively large variation is introduced 
that can be traced to an assignable cause (Kvanli et al., 1996).  
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 Q-4.1.1  Control charts are most frequently used in groundwater monitoring detection 
programs for intra-well comparisons, in which data are collected for a single well over some pe-
riod of time. Control charts are useful for areas with no previous contamination because detect-
ing contamination may require a significant change. This is particularly applicable to monitoring 
down-gradient of waste cells or landfills, because it can highlight whether there has been a re-
lease to groundwater. If contamination was historically present, it will take a significant increase 
in concentrations relative to historical values to show a detection (Gibbons, 1994). Control 
charts, however, are not constructed for making precise probability statements; they are con-
structed as a guide for determining when investigative action is needed (Gilbert, 1987). Further-
more, contamination may be present intermittently or may increase in a step function. The 
absence of an increasing trend does not necessarily support that a release has not occurred. 
 
 Q-4.1.2  Control charts are designed for a given constituent and well in which concentra-
tions are plotted against time with horizontal lines called “control limits.” Control limits are 
based on meaningful and sufficient historical data with no outliers and trends over time. As new 
data become available, those concentrations are also plotted. The EPA recommends, and current 
RCRA regulations specify, developing control limits with data consisting of at least eight inde-
pendent samples over a 1-year period. As with most statistical applications, more historical data 
are desirable but, in practical terms, are rarely available.  
 
 Q-4.1.3  The assumptions underlying control charts are that when the process is in-
control, data are independent and normally distributed with a fixed mean and constant variance. 
Independence is crucial. Control charts are not robust with respect to the departure from inde-
pendence (i.e., when data are correlated). To minimize the possibility that samples are depend-
ent, Gibbons (1994) recommends a sampling frequency of no more than one sample per quarter. 
To identify serial correlation, a sample’s serial correlation coefficient can be calculated. (Details 
are provided in Appendix O.) A correlogram may be plotted to determine if serial correlation is 
large enough to create problems. (Details are provided in Appendix J.) A quick method for de-
termining if serial correlation is large is to compare the autocorrelation coefficients to  
 
 n2±  
 
where n is the number of time periods when data were collected. Autocorrelation coefficients 
that exceed either of these values require further investigation. 
 
 Q-4.1.4  The assumption of normality is not nearly as crucial, but the data’s distribution 
should still be investigated. To achieve normality, data transformations (such as natural-log 
transformations or square-root transformations) should be applied to sample data, as appropriate. 
Gilbert (1987) suggests that as long as data are normally distributed and the correlation associ-
ated with the data is not too large, control chart methods work well. Gilbert goes on to say that 
although environmental data are typically non-normal, control charts are still useful for indicat-
ing where concentrations are not likely to be from the same distribution as in the past.  
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 Q-4.1.5  Seasonality, a component of the data’s variability, should also be considered be-
fore control charts are developed. Seasonality can be addressed by removing seasonal effects 
from the data, if sufficient data are available for at least two seasons of the same type. Removing 
seasonality was previously discussed in Paragraph Q-2. Gilbert (1987) recommends two other 
methods to circumvent seasonality issues. If data are available for a number of complete cycles, 
separate control charts for each season can be prepared. If the data do not span a long duration 
and the magnitude of the cycles is relatively small, a moving-average control chart may be con-
structed. 
 
 Q-4.1.6  In terms of proxy concentrations appropriate for control charts, Gibbons (1994) 
suggests that if at least 25% of samples are detections, a proxy concentration based on just the 
sample-specific method detection limit is adequate for control charts. 
 
 Q-4.1.7  Several types of control charts are discussed in this section: Shewart control 
charts, CUSUM control charts, and Shewart-CUSUM control charts. The advantage to Shewart 
control charts is that they are immediately sensitive to large changes. The advantage to CUSUM 
control charts is that they are sensitive to small and gradual changes. Shewart-CUSUM control 
charts are a combination of the other two. As such, their benefit is that they can detect both sud-
den and gradual changes in concentrations. 
 
 Q-4.2  Shewart Control Charts. 
 
 Q-4.2.1  Introduction.  Shewart control charts, which are the oldest and simplest charts 
(Gibbons, 1994), are sensitive to sudden changes and focus on the current monitoring value. Cur-
rent data (not historical data) are first plotted against time. Control limits are subsequently placed 
on the same plot as horizontal lines. The control limits are calculated using historical data from a 
period of time when the system under study was stable. New data that fall outside of the control 
limits indicate that current conditions have changed from the historical ones used to establish the 
control limits. Although lower control limits are used in other fields, only the upper control limit 
is typically established for environmental data, as the objective is to identify dramatically in-
creasing concentrations. An upper control limit can be developed from historical data using the 
equation σμ Z+ , where μ  is the population mean, σ  is the population standard deviation, and 
Z  is an upper percentage point of the normal distribution. For this case, Z is typically equal to 3, 
which corresponds to a confidence level of 9987.01 =− α  for a single new comparison.  
 
 Q-4.2.1.1  However in most cases, long-run historical data are unavailable and a sample 
estimate of the mean ( x ) and standard deviation (s) must be used. In this case, the equation for 
the upper control limit is Zsx + . When using the sample estimates to calculate an upper control 
limit with as few as eight historical samples, however, the control limit only provides an overall 
95% confidence for five new comparisons and the overall confidence decreases as the number of 
future observations increases (Gibbons, 1994). As such, EPA 530-SW-89-026 recommends set-
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ting control limits to sx 5.4+  for routine groundwater monitoring situations. “Overall confi-
dence levels for this control limit are 95% with n = 8 and 35 future comparisons; however, veri-
fication resampling further reduces false positive rates to acceptable levels for most monitoring 
programs” (Gibbons, 1994), avoiding the problem of multiple comparisons discussed in Appen-
dices M and N. It should be noted that 4.5 is a generic value recommended by the EPA to be pro-
tective in most monitoring situations. Gibbons, 1994 warns “[t]he reader should note that unlike 
prediction limits which provide a fixed confidence level (e.g. 95%) for a given number of future 
comparisons, control charts do not provide explicit confidence levels, and they do not adjust for 
the number of future comparisons.” See Appendix K for information on developing prediction 
limits to cover a specific number of future observations and tolerance limits to cover an indefi-
nite number of future observations. 
 
 Q-4.2.1.2  If more than eight historical samples are available, it is reasonable to use only 
the most recent eight. Once a control limit is developed, the current monitoring value is com-
pared to the control limit. If the value exceeds the control limit, the groundwater system should 
be investigated for causes associated with the increase in concentration. Directions for preparing 
a Shewart control chart are given in Paragraph Q-4.2.2, followed by an example in Paragraph Q-
4.2.3. 
 Q-4.2.2  Directions for Preparing a Shewart Control Chart. 
 
 Q-4.2.2.1  Verify the following assumptions:  
 
 Q-4.2.2.1.1  For each sampling location (e.g., a well for groundwater monitoring), data 
are available from at least eight independent samples from previous sampling events to estimate 
the mean and standard deviation. 
 
 Q-4.2.2.1.2  Determine if data are correlated. 
 
 Q-4.2.2.1.3  Identify if data or transformed data are normally distributed. 
 
 Q-4.2.2.1.4  Check if seasonality is affecting data, and, if so, remove the seasonality. 
 
 Q-4.2.2.2  At a given location or well, take independent samples over n historical sam-
pling events ( 8≥n ).  
 
 Q-4.2.2.3  Calculate the mean ( x ) and standard deviation (s) of the n samples. 
 
 Q-4.2.2.4  Calculate an upper control limit by the equation Zsx + , where Z is set to 4.5 
for routine groundwater monitoring programs. Note that setting 5.4=Z ensures a 95% overall 
confidence level when 8=n and 35 future comparisons are made to this upper control limit 
(Gibbons, 1994). 
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 Q-4.2.2.5  Plot the current concentrations with respect to time and superimpose the upper 
control limit. 
 
 Q-4.2.2.6  Identify if the system is in-control or out-of-control by identifying if concen-
trations are below the upper control limit or above the upper control limit, respectively. 
 
 Q-4.2.2.7  Investigate any situation in which a concentration is above the upper control 
limit. 
 
 Q-4.2.3  Example of a Shewart Control Chart.  Benzene is measured from quarterly 
groundwater samples at well MW01 in Site A from 1998–2000 to develop a control chart to 
compare to the 2001 sampling results (Table Q-7).  
 
 Q-4.2.3.1  Verifying assumptions are as follows. 
 
 Q-4.2.3.1.1  10=n . Samples were taken with at least a 3-month interval; therefore, the 
samples should be independent. 
 

 Q-4.2.3.1.2  This set of data is the same as that used to calculate the serial correlation for 
the example in Paragraph O-2.6.2. From that example, the following summary statistics were es-
timated: 824.4=x  and 284.3=xs , and the serial correlation coefficient = –0.2527. The corre-
logram for these data is shown in Figure Q-7. 
 
Table Q-7a 
Historical Data for Upper Control Limit in Example Q-4.2.3 

Time Jan-98 Apr-98 Jul-98 Oct-98 Apr-99 Jul-99 Oct-99 Apr-00 Jul-00 Oct-00 
Time Period   1 2 3 4 5 6 7 8 9 10 
Conc. (µg/L)  12.2 3.79 3.42 5.47 0.81 1.84 7.56 4.32 0.68 6.17 

 
Table Q-7b 
Current Data to Use to Compare to Control Limit in Example Q-4.2.3 

Time Jan-01 May-01  Jul-01 Nov-01 
Conc. (µg/L) 0.64  2.19  1.72  1.15 
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Figure Q-7.  The correlogram. 

 
 Q-4.2.3.2  Serial correlation does not appear to be a problem, even though the default at k 
= 0 (where k is the autocorrelation coefficient) is greater than the n2± bounds (± 0.632). 
 
 Q-4.2.3.2.1  To test the assumption of normality, the Shapiro-Wilk test was performed 
with the data based on a 95% level of confidence. Results of this test provide evidence to suggest 
that the data follow a normal distribution because the p value is 0.3363, which is greater than the 
significance level of 05.0=α  (there is not enough evidence to reject the null hypothesis of nor-
mality). 
 
 Q-4.2.3.2.2  There are not enough results to adequately identify seasonal trends and no 
obvious trend is visible in the previous time plot. For this example, we will assume that the data 
are not affected by seasonality. 
 
 Q-4.2.3.3  There are not enough results to adequately identify seasonal trends and no ob-
vious trend is visible in the previous time plot. For this example, we will assume that the data are 
not affected by seasonality. Calculate the control limit as follows. 
 
 Q-4.2.3.4  The upper control limit = 06.19)284.35.4(824.4 =×+=+ sZx . None of the 
samples taken in 2001 exceeds this upper control limit, as shown in Figure Q-8. 
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Figure Q-8. Historical data (1998–2000) and 2001 data 
with Shewart Control limit for benzene (SW8260B) in 
groundwater at Site A, MW-01. 

 
 Q-4.3  CUSUM Control Charts.  CUSUM control charts are more sensitive than Shewart 
control charts to small and gradual changes. They incorporate current and historical information 
by calculating a cumulative sum, S, for the ith sample. Directions for preparing a CUSUM control 
chart are provided in Paragraph Q-4.3.1, followed by an example in Paragraph Q-4.3.2. See Gib-
bons (1994) for more information. 
 
 Q-4.3.1 Directions for a CUSUM Control Chart.  Verify that the assumptions required 
for CUSUM charts are met. 
 
 Q-4.3.1.1  Assumptions. 
 
 Q-4.3.1.1.1  At least eight independent samples (from previous sampling events) were 
collected for each sampling location (groundwater monitoring well) to estimate the mean, x , and 
sample standard deviation, s. 
 
 Q-4.3.1.1.2  The data cannot be correlated; determine if the data are correlated. 
 
 Q-4.3.1.1.3  The data must be normal; determine whether the data or transformed data are 
normally distributed. 
 
 Q-4.3.1.1.4  Determine whether seasonality is affecting the data; if so, remove the sea-
sonality. 
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 Q-4.3.1.2  Calculate the mean and standard deviation for the historical data results. 
 
 Q-4.3.1.3  Choose an appropriate value for k (one-half the size of a difference worth de-
tecting). The EPA recommends setting k = 1, which means that a difference of two units of stan-
dard deviation is meaningful. 
 
 Q-4.3.1.4  At a given location or well, determine the cumulative sum for each independ-
ent sample. Define  
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= . The function max[a, b] means to use the value a or b, whichever is higher. 

 
 Q-4.3.1.5  Choose the appropriate control limit, h. EPA recommends setting h = 5. The 
value of 5 is based on simulations and recommendations contained in Lucas (1982), Hockman 
and Lucas (1987), and EPA 600/4-88-/040. Essentially, h is the upper control limit. (One way to 
determine whether Si exceeds five is to plot S versus i for the data.)  
 
 Q-4.3.1.6  Identify if the system is in-control or out-of-control by identifying whether 
each Si is less than h (in-control), or greater than h (out-of-control).  
 
 Q-4.3.1.7  Investigate any situation in which a concentration is out-of-control. Ideally, 
additional samples would determine if the out-of-control condition is real and persistent. 
 
 Q-4.3.1.8  EPA 530-SW-89-026 recommends detecting a difference of two standard de-
viations, or k = 1. CUSUM control charts are developed by plotting each Si against the iteration i. 
Each Si is compared to an appropriate control limit, h. EPA guidance recommends h = 5. If any 
Si value exceeds h, the groundwater system should be investigated for causes associated with the 
increase in concentration.  
 
 Q-4.3.2  Preparing a CUSUM Control Chart.  Consider evaluating the same data used in 
the example for developing Shewart Control Charts. Benzene concentrations taken from quar-
terly groundwater samples at well MW01 in Site A from 1998–2000 will be used as a basis for 
comparison to the 2001 sampling results.  
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 Q-4.3.2.1  The assumptions for developing CUSUM control charts are the same as devel-
oping Shewart control charts. As explained in Paragraph Q-4.2.3, all of these assumptions have 
been met. 
 
 Q-4.3.2.2  Set 1=k , 00 =S , and .5=h  
 
 Q-4.3.2.3  For each of the current results in 2001, iS  is calculated as  
 
 ],0max[ 1−+−= iii SkzS   
 
where 
 

 
σ

μ−
= i

i
x

z  

 
μ  is estimated by 824.4=x , and σ  is estimated by 284.3=xs . (Specify what data are being 
used to calculate the mean and standard deviation.) Each iS value is then compared to 5=h ; 
cases in which hSi ≥  are defined as samples out-of-control. (Note: Both the mean and standard 
deviation come from 10 historical samples.) 
 
 Q-4.3.2.4  Results are presented in Table Q-8 and show that none of the current results 
are out-of-control. 
 
 Q-4.3.2.5  As an example of these calculations, consider the July 2001 concentration, 
where 3=i : 
 

 945.0
284.3

824.472.1
3 −=

−
=z  

 
 0]945.1,0max[)]01945.0(,0max[3 =−=+−−=S . 
 
 Q-4.3.2.6  Because 503 =<= hS , the sample is in-control. In this example, there are no 
out-of-control events because Si < 5 for all i. 
 
 Q-4.4  Combined Shewart-CUSUM Control Charts.  Combined Shewart-CUSUM control 
charts can be used to detect sudden and gradual changes in concentrations. These control charts 
combine the benefits of the Shewart and CUSUM charts, as illustrated in Paragraph Q-4.4.1.  
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Table Q-8 
Current Data 

Time Jan-01 May-01 Jul-01 Nov-01 
Concentration (µg/L) 0.64 2.19 1.72 1.15 

i  1 2 3 4 

iz  –1.274 –0.802 –0.945 –1.119 

iS  0 0 0 0 

Out-of-control? No No No No 
 
 Q-4.4.1  Consider evaluating the same data used in the example for developing the 
Shewart and CUSUM control charts. Benzene concentrations taken from quarterly groundwater 
samples at well MW01 in Site A from 1998–2000 will be used to develop a control chart to 
compare to the 2001 sampling results.  
 
 Q-4.4.2  The assumptions for developing Shewart-CUSUM control charts are the same as 
for developing Shewart and CUSUM control charts. As explained above, all of these assump-
tions have been met. 
 
 Q-4.4.3  Set 5=h , 1=k , and use the Shewart chart control limit SCL 4.5=  as recom-
mended by the EPA. 
 
 Q-4.4.4  The standardized values for each of the current results are estimated, as shown in 
Table Q-9. The standardized values, iz , are developed using the historical average and standard 
deviation of 824.4=x  and 284.3=s .  
 
 Q-4.4.5  Then, each iz value is compared to SCL 4.5= , and each iS value is compared to 

5=h . If SCLiz >  or hSi > , the result is out-of-control.  
 
 Q-4.4.6  Results are presented in Table Q-9 and indicate that none of the current results 
are out-of-control. 
 
 Q-4.4.7  As an example of these calculations, consider the July 2001 concentration, 
where 3=i : 
 

 945.0
284.3

824.472.1
3 −=

−
=z  . 

 
 Q-4.4.8  0]945.1,0max[)]01945.0(,0max[3 =−=+−−=S . 
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 Q-4.4.9  As 5.4945.03 =<−= SCLz  and 503 =<= hS , this sample is in-control. 
 
 Q-4.4.10  A plot of the standardized results )( iz  versus the time interval (i) can be de-
signed to illustrate this information, as shown in Figure Q-9. 
 
Table Q-9 
Current Data 

Time Jan-01 May-01 Jul-01 Nov-01  
Concentration (µg/L) 0.64 2.19 1.72 1.15  

i  1 2 3 4  

iz  –1.274 –0.802 –0.945 –1.119 Compare zi to SCL = 4.5. 

iS  0 0 0 0 Compare Si to h = 5. 

Out-of-control? (i.e., iz > SCL = 

4.5 or, iS > h =5 )? 

No No No No  
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Figure Q-9.  Combined Shewart-CUSUM Control 
Chart (mean = 4.824, standard deviation = 3.284, k = 
1, h = 5, SCL = 4.5). 
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APPENDIX R 
Geostatistics 

 
R-1 Introduction.  Geostatistics is a method for analyzing spatially correlated data. It is used 
to identify spatial patterns and to interpolate values at unsampled locations. Sampling and map-
ping in the earth sciences are complicated by spatial and temporal patterns. The structure and in-
tensity of such patterns often cannot be reliably predicted with deterministic models of fate and 
transport or with classical statistical methods applied to sample observations. Geostatistics is a 
way of interpreting patterns from sample observations taking advantage of spatial correlation. In 
geosciences, spatial correlation arises when samples taken close to one another are more likely to 
have similar values than samples taken far apart Clark (1979). 
 
 R-1.1  Appendix O explains that covariance is a statistical measure of the association be-
tween two variables. If two variables are independent, the covariance is zero. For geostatistical 
analysis conducted on a regionalized variable, the auto-covariance between nearby samples is 
considered to be possibly not equal to zero. If the auto-covariance between two measurements 
taken close to each other is not zero, then the application of classical statistical methods may im-
part a substantial bias to the estimate. 
 
 R-1.2  Classical statistical methods rely on data being independent over distance or time. 
Hence, in many environmental problems, the use of classical statistics is not entirely accurate, 
because variables are frequently spatially controlled. Geostatistics recognizes the spatial correla-
tion and provides methods for the following. 
 
 R-1.2.1  Calculating predictions (such as the concentration of a metal at a specific loca-
tion in soil). 
 
 R-1.2.2  Quantifying the accuracy of the predictions. 
 
 R-1.2.3  Selecting optimal locations to sample given an opportunity to collect more data. 
 
 R-1.3  A geostatistician’s main task is to predict a regionalized variable (e.g., hydraulic 
gradient or metal concentration in soil) from a set of measurements. More detailed treatment of 
geostatistical methods can be found in Cressie (1993) and Goovaerts (1997). 
 
R-2 Semivariogram.  The characteristic tool in geostatistics is the semivariogram to quantify 
and model the spatial correlation structure. A semivariogram is essentially a plot of the variance 
of groups of paired sample measurements as a function of the distance between samples. Typi-
cally, for the situation in which the variance depends only upon distance (and not direction), all 
possible sample pairs a fixed distance apart (h) are used to calculate a variance for h: 
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where xi and xj represent the value (i.e., concentration) at a pair of sample points i and j; the 
summation is over all possible pairs of points within a subgroup of the data that are a distance h 
apart (where i < j); and Nh denotes the total number of pairs that are h units part. For example, h 
is typically defined as increasing along constant intervals (h = {1d, 2d, 3d, …}, where d is a dis-
tance interval such as 5 feet.) In practice, a window of allowable distances is used so that many 
points will be included in each calculation of s2(h). For example, a group of samples used to cal-
culate s2 (3 feet) may have inter-point distances that are between 2 feet to 4 feet apart, rather than 
exactly 3 feet apart. This window is defined using a tolerance δ for h, so that all points within h ± 
δ of each other are grouped into the subset from which s2(h) is calculated. The user chooses this 
tolerance and other grouping parameters to define how the data will be grouped into subsets to 
calculate the s2(h) for each h. Different experimental variograms can be calculated for a given 
data set by varying the grouping parameters used to control the spatial geometry of the data sub-
sets at each distance h. 
 
 R-2.1  With grouping parameters defined, computer software is used to do the intensive 
computations involved in calculating the variance s2(h) for different values of h. The quantity 
γ(h) = (1/2)s2(h) is plotted as a function of increasing distance, i.e., 1h, 2h, etc., and is referred to 
as the experimental or empirical semivariogram. Although the variogram is, by definition, twice 
the semivariogram, the terms variogram and semivariogram are often used interchangeably. 
 
 R-2.2  After experimental semivariograms are reviewed, a continuous mathematical 
curve, called a model semivariogram, is then fit to the experimental semivariogram. Examples of 
model semivariograms are displayed in Figure R-1. The model semivariogram (Figure R-1a) is 
assumed to characterize the relationship of how variance in neighborhoods increases as the 
neighborhoods get larger. This relationship must be estimated for each site application. In prac-
tice, 20 or more sample locations are necessary to construct a useful empirical semivariogram, 
and often geological site knowledge and statistical judgment are important considerations in es-
timating the model semivariogram. 
 
 R-2.3  Figures R-1b and R-1c illustrate two model forms that have a sill, or maximum 
variance. A sill is the upper limit of any semivariogram model that levels off at large distances. 
In physical terms, the sill is the variance of concentrations at the site that are at a large enough 
distance from each other to be statistically independent. The distance at which spatial correlation 
becomes insignificant is called the range. Sample points separated by this distance or more are 
considered statistically independent and can be analyzed using a classic statistical approach. An-
other feature of a semivariogram illustrated in Figure R-1c is the nugget. In a model having a 
nugget, γ(h) does not approach zero as h approaches zero but rather a positive value that is gen-
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erally attributed to such things as measurement error for a single observation or small-scale vari-
ability. 
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Figure R-1.  Types of semivariograms. 
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R-3 Kriging.  The geostatistical interpolation method of kriging uses the concepts and model 
established in a semivariogram data evaluation to develop both an unbiased estimate of the ex-
pected value at any specified location, as well as the uncertainty associated with this estimate. 
Typically, estimates are derived along a regularly spaced grid. With relatively dense grids, the 
estimate at each grid point is also the estimate of the mean value within the block centered on the 
grid point. 
 
 R-3.1  The kriging estimate is a weighted mean of the neighboring samples, where each 
weight reflects the amount of unique (non-redundant) information contained about the location to 
be estimated that is in a given sample. The assignment of weights to each neighboring sample is 
based on the model semivariogram, and includes consideration of the inter-point distance be-
tween the sample and the location to be estimated, as well as the inter-point distances between 
this sample and its neighboring samples. Neighboring samples, if close together, are spatially 
correlated and, therefore, contain redundant (non-independent) information about the location to 
be estimated. Kriged estimates are more accurate than an un-weighted arithmetic mean; that is, 
they are unbiased (the bias from clustered samples is removed), and they have a lower variance.  
 
 R-3.2  Some types of kriging that may be encountered are ordinary kriging, indicator or 
probability kriging, and block kriging. Ordinary kriging is used to predict the value of some vari-
able at a specific location. In block kriging, the technique allows the prediction of a variable 
mean within a block or area.  
 
 R-3.3  The required assumptions for kriging are that the sample to be estimated lie within 
the neighborhood for which the model semivariogram has been estimated, that there be adequate 
empirical evidence (sample data) or scientific support (e.g., source history) for the appropriate-
ness of the model semivariogram, and that the neighborhood be homogeneous, with no distinct 
trends in the data values. For kriging, a trend is a deterministic gradient that can be modeled 
(such as an exponential decrease in deposition with distance from a point release). Such trends 
should be characterized and then subtracted from the regionalized variable being modeled. 
Kriging can then be run on the residuals to account for local patchiness and clustered sample 
data. Alternatively a release or plume of contamination can often be divided into strata in which 
the conditions are approximately homogenous (e.g., geological strata, differing source areas). 
The blocks of each neighborhood are then kriged using their corresponding semivariogram. 
 
 R-3.4  Any estimation procedure has an associated estimation variance. The special prop-
erty of kriging is that it selects the set of weights that minimizes the estimation variance and pro-
duces the best linear unbiased estimator. 
 
 R-3.5  The assessment of uncertainty in geostatistics is highly quantitative; interpolated 
concentrations are estimated on the basis of an underlying model of correlation and variability. 
As such, the estimates themselves are directly linked to estimates of uncertainty. A predicted 
value may be expressed as a quantity plus or minus some quantity representing the uncertainty 
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(X ± ε), or the predicted value may be associated with a probability (X, p = 0.9). Specific meth-
ods of estimating the uncertainty are beyond the scope of this document; they are usually calcu-
lated using computer software. 
 
 R-3.6  Geostatistics can be used to evaluate and manage the uncertainty associated with 
remedial activities for a study area. Even with ample site characterization data (borings or wells), 
the boundaries of the treatment zone are imperfectly defined. Geostatistics allows us to evaluate 
the risk that the size, and, therefore, cost, of the remediation may be larger or smaller than ex-
pected. First, the site is characterized and adequate data are collected. Second, the data are trans-
formed by assigning a value of 1 or 0 (indicator values), depending on whether the value is 
above or below, respectively, a given cleanup value or other criterion. Third, the transformed 
data are used to construct a variogram. Fourth, the variogram is modeled as previously described. 
This model is then used to perform kriging with the indicator values. The kriging estimates re-
flect a probability that the concentration at the points of estimation exceed the cleanup value or 
other standard. These kriging estimates can be contoured to define areas or volumes of material 
that have a certain likelihood of exceeding some cleanup value. The contour value is essentially 
the probability of exceedance. Last, the size of the area defined by different probabilities of ex-
ceedance can be determined and, using a unit cost or similar approach, a cost-versus-risk curve 
can be developed.  
 
 R-3.7  This can be used in programming money for the project, as a basis for negotiating 
cleanup levels with regulators, or to help determine if the cost and time of additional characteri-
zation work will be offset by less risk during construction. Alternatively, rather than transform-
ing the data to ones and zeros, the actual values can be kriged, and the kriging variances can be 
used to determine prediction intervals for each estimated value. In the vicinity of the point esti-
mate, these prediction intervals can be used to define the spread of potential values expected 
within a given probability. This assumes the data are normally distributed or have been trans-
formed to be normally distributed. 
 
R-4 Software for Geostatistics.  There are a number of software applications to assist in geo-
statistical calculations. Two older applications developed by the U.S. Environmental Protection 
Agency (EPA) are GeoPack and Geo-EAS (EPA 600/4-88/033). 
 
 R-4.1  GeoPack conducts analysis of variability for one or more random functions. 
GeoPack includes basic statistics, such as mean, median, variance, standard deviation, skew, and 
kurtosis. The package also does regressions, distribution testing, and percentile calculations. 
Sample semivariograms, cross-semivariograms, or semivariograms for combined random func-
tions for a two-dimensional, spatially dependent random function can also be determined. 
GeoPack includes ordinary kriging and co-kriging estimators in two dimensions, along with their 
associated estimation variance and the conditional probability that the value is greater than a 
user-specified cutoff level. Graphical tools include linear or logarithmic line plots, contour plots, 
and block (pixel) diagrams. 
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 R-4.2  Geo-EAS was also developed by the EPA and is a collection of interactive soft-
ware tools for doing two-dimensional geostatistical analyses of spatially distributed data. Pro-
grams are provided for data management, data transformations, univariate statistics, 
semivariogram analysis, cross-validation, kriging, contour mapping, post plots, and line-and-
scatter graphs. The application is DOS-based. 
 
 R-4.3  A publicly available package of geostatistical software that is more comprehensive 
than these EPA packages is GSLIB, available at http://www.gslib.com. The DOS-executable 
freeware may be downloaded from this site. Alternatively, the software source code and a sup-
porting textbook may also be purchased at the site for a nominal fee.  
 
 R-4.5  Commercial software for Windows, Sun, or Macintosh systems include 
WinGSLIB, Environmental Visualization System, and Groundwater Modeling System (GMS), 
which is currently available to all USACE, U.S. Department of Defense, EPA, and U.S. Depart-
ment of Energy personnel. 
 
R-5 Case Study: Geostatistical Analysis of Remediation by In Situ Ozonation. 
 
 R-5.1  Introduction.  An application of geostatistics to environmental remediation will be 
explored in this case study. Three-dimensional kriging was used to support the Remedial Investi-
gation/Feasibility Study, Remedial Action Plan, Confirmation Sampling, and Remedial Action 
Report (site closure) for a former manufactured gas plant (MGP) located in Long Beach, Cali-
fornia. The former MGP operated from approximately 1901 to 1913 and produced gas from coal 
and crude oil feedstocks. The project was conducted pursuant to an agreement with the Califor-
nia Environmental Protection Agency Department of Toxic Substances Control under their Ex-
pedited Remedial Action Program. In-situ ozonation was used to lower levels of polycyclic 
aromatic hydrocarbons (PAHs) to meet the selected risk-based cleanup levels for this site. The 
kriging results played an important role in several estimation and decision processes, including:  
 
 R-5.1.1  Contouring the original distribution of PAH. 
 
 R-5.1.2  Defining the footprint and depths for the treatment zone. 
 
 R-5.1.3  Supporting decisions regarding placement for the ozone-injection well system.  
 
 R-5.1.4  Selecting quarterly monitoring locations for soil samples during the treatment 
process as well as for post-treatment confirmation samples. 
 
 R-5.1.5  Contouring the final post-treatment distribution. 
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 R-5.1.6  Estimating the site-wide exposure concentration used for risk assessment and 
site closure.  
 
 R-5.2  Post-Treatment Modeling.  Quarterly monitoring results indicated substantial re-
ductions in PAH levels early in the treatment, which began in 1998. However, within 2 years, 
monitoring indicated that the reductions had reached an asymptote, reflecting the diminishing re-
turn of continued ozonation and the recalcitrant nature of the residual PAHs. In 2000, confirma-
tion samples were taken from random locations within the defined treatment zone. Kriging was 
then used to model the post-treatment spatial distribution of PAHs and compare it to the pre-
treatment distribution (Figure R-2). Kriging uncertainty was estimated and used to determine 
whether cleanup goals had been met.  
 
 

         
 

a. Pre-ozonation. b. Post-ozonation. 
 

Figure R-2.  Comparison of krige-interpolated benzo-
(a)pyrene concentrations before and after treatment by 
in situ ozonation. 

 
 R-5.3  Reporting.  The reporting of the kriging analysis was included in the Remedial Ac-
tion Report as an appendix with an organization and level of detail consistent with guidelines 
given in Standard Guide for the Contents of Geostatistical Site Investigation Report (ASTM 
D5549-94e1). To enhance the practical value of this case study, the following parts of the ASTM 
outline are used below: software, data sources, exploratory analysis (and conceptualization), spa-
tial continuity analysis, estimation, and uncertainty.  
 
 R-5.4  Software.  The analysis was conducted using the three-dimensional kriging utilities 
of the GMS software mentioned in Paragraph R-4.  
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 R-5.5  Data Sources.  The variable of interest was benzo(a)pyrene equivalents (a 
weighted sum of carcinogenic PAHs in each sample). The first kriging analysis (pre-
remediation) was conducted on sample data dispersed over approximately 75 soil borings pri-
marily from the remedial investigation (RI) program that was completed in 1997. In contrast, the 
post-remediation kriging was conducted on a composite data set that consisted of 1997 RI sam-
ples that were outside the treatment area, together with the latest samples available for the treat-
ment area taken in 2002. Thus, the post-remediation data set reflected the assumption that soil 
concentrations in the untreated areas were stable over time (reasonable for the PAHs involved) 
and, therefore, well represented by older data, while soil concentrations in the treatment zone 
were expected to change over time so that older samples were not included in the kriging analy-
sis.  
 
 R-5.6  Exploratory Analysis and Site Conceptualization.  The recommended Exploratory 
Analysis section in the ASTM guidelines is expanded here to be a conceptual discussion, deemed 
important for all sites, that considers all relevant qualitative and quantitative information about 
the site. The integration of these different types of information is crucial for explicitly identifying 
a conceptual model of the contamination distribution that will guide a number of assumptions 
and decisions throughout the analysis. Beyond the analytical sample results, such information in-
cludes topography, stratigraphy, observations made in boring logs, site history, and other qualita-
tive and semi-quantitative information. For the MGP site, all examples from the above list were 
applied in some way during formulation of the geostatistical analysis. The following description 
of some of the qualitative information about the site is included before the transition into the ex-
ploratory data analysis. 
 
 R-5.6.1  Well-established site history provided engineering process information, as well 
as maps of potential source structures, that could be used to compare with the posted analytical 
results. An additional factor at the site is that its current condition includes an engineered soil 
levee along the Los Angeles River as well as soil fill set around large concrete supports for a 
bridge and on-ramp built across the site in 1953–1963 (subsequent to decommissioning of the 
MGP). Thus, the topography is quite varied and includes imported soil brought in to cover large 
parts of the site. Topography, native or fill, definitely influenced soil volumes and, therefore, had 
to be incorporated explicitly into the kriging estimation. Furthermore, the three-dimensional 
visualization of the topography and sample data (Figure R-3) indicated that spatial correlation 
occurred along a relatively level elevation rather than following the highs and lows of the present 
surface topography. (An approximate two-fold vertical exaggeration is used to aid the visualiza-
tion of data points within a boring.) This is consistent with the expected pattern produced by an 
originally flat plant site. Because the subsequent mixing and earth movement are somewhat un-
certain, the large volume of soil covering the former plant was sampled, along with the native 
soil, as part of the RI and was included in the site-wide model and calculations.  
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Figure R-3.  Surface topography with benzo(a)pyrene concentrations and a kriged 
isovolume. 

 
 R-5.6.2  The additional exploration of the analytical data, in the form of a histogram and 
descriptive statistics, indicated a high degree of skewness with suggestions of a composite of two 
different populations: one with low concentrations (i.e., “background”) that were found in the 
outlying areas, and the other with moderate-to-relatively high concentrations that still presuma-
bly reflected some varying amount of impact from the historical contamination (even after treat-
ment). Samples in the outlying areas were more sparse than in the central area, but still provided 
ample evidence to confirm the central positioning of the impacted soil in and around former 
MGP structures. Therefore, this potentially distinct population of low values was considered im-
portant to keep in the data set so that it would help define the outward extent of the residual con-
tamination. 
  
 R-5.6.3  Including the low concentrations together with the more central data had the fol-
lowing implications. 
 
 R-5.6.3.1  Site Mean.  The site-wide estimate of exposure concentration would reflect a 
site mean that included, in accordance with the defined site boundaries, both background and 
impacted volumes of soil. The site-wide mean to be calculated based on the kriging analysis 
would have contributions from both parts of the site in a manner that was “volume-weighted.” 
Given that any future redevelopment of the site would require the removal of the bridge support 
structures and intensive mixing of soil across the entire site, this site-wide mean was considered 
a realistic assumption for the conservative residential risk scenario. 
 
 R-5.6.3.2  Spatial Pattern or Lateral Extent.  The lower concentrations confirm site his-
torical information regarding the “edges” of the impacted zone. Given this confirmation, the 
sparse outlying data can and should be supplemented with “soft data” to fill in areas of low data 
density and create a well-controlled boundary condition for the edges of the site. Such soft data, 
termed the “extended data set,” were added to the kriging for the estimation phase conducted af-
ter development of the variogram. 
 
 R-5.7  Spatial Continuity Analysis.  It is reasonable to estimate soil concentrations across 
the site based on the underlying kriging assumption of spatial continuity. The fate and transport 
processes, involved in both the contamination and the ozone dispersion and effect, are presuma-
bly spatially continuous on some scale. Although soil structure and sample concentrations are 
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notoriously variable or even discrete on a small scale, the resolution requirements implied by 
both risk assessment and remediation allow a broader focus. The view from risk assessment is 
one of exposure accumulated over time and space (a spatial average), and the view from reme-
diation might be described as akin to the scoop size of a backhoe or some other scale useful for 
feasibility and cost estimation of the specific treatment. This larger scale of variability is more 
forgiving in the sense that an interpolation of the mean concentration in a cubic-yard block of 
soil has a lower uncertainty than an interpolation of any particular shovel-full of soil in the same 
block.  
 
 R-5.7.1  Therefore, the search for evidence and range of spatial continuity need not be a 
matter of finely tuned research for many sites although the level of rigor must be consistent with 
the site conceptualization. For example, one might argue that the outlying data, if they are truly 
background, may be a different population altogether than the central data, with different conti-
nuity ranges to be found by analyzing the two sets separately. On the other hand, there is no 
bright line around the site to delineate these two populations spatially (at least “a priori,” before 
the spatial analysis was done). More realistically, there is likely to be a gradient of soil impacted 
by some level of contamination and also some level of remediation, such that the net impact, or 
probability of impact, on the soil decreases with distance from the central area and individual in-
jection wells. The spatial range of correlation that is defined for the kriging variogram should 
ideally be appropriate for this transition zone, as well as for the obvious central or outlying areas 
of the site. In other words, practicality points to the simplest assumptions that will “work.” 
 
 R-5.7.2  Spatial continuity was investigated on the entire post-remediation data set using 
a general relative variogram, which automatically adjusts for the proportional effect commonly 
found in contaminant concentration data and lognormal tending data in general. The variances 
calculated for a relative variogram were modified by dividing the group variances by the square 
of the local mean, which can be calculated in several ways. This improved the structure of the 
experimental variogram and, specifically for the case study data, allowed the modeler to observe 
lower relative variances (stronger correlations) at inter-point distances of about 5 to 10 feet (in 
the laterally direction), moderate variances at about 30 to 40 feet, and highest variances reaching 
a plateau at about 50 to 60 feet (see Figure R-4a).   
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a. Directional horizontal variograms. b. Horizontal and vertical variograms. 
 

Figure R-4.  Two sets of experimental variograms used to define the krige variogram 
model. 

 
 R-5.7.3  Horizontal anisotropy was reviewed by limiting vertical and angular grouping 
parameters (depends on software package) to create different directional “horizontal 
variograms.” No horizontal anisotropy was present. However, the comparison between the hori-
zontal variograms and vertical variograms, created by limiting horizontal grouping parameters, 
indicated that the vertical range of spatial correlation was approximately one-fourth that of the 
horizontal range. A spherical model variogram with vertical anisotropy was selected, with a 
horizontal range of 49 feet and a vertical range of 12.4 feet (Figure R-4b).  
 
 R-5.8  Estimation.  A concentration estimate was developed for every cell center of a 
three-dimensional grid with cell dimensions 6 by 6 by 3 feet. Cell dimensions were chosen to be 
consistent with earlier modeling work, but also were considered to provide an adequate balance 
between the resolution needs of risk and remediation resolution and the increased run-time and 
overall unwieldiness of denser grids. The three-dimensional contour map could be compared to 
the pre-remediation maps in plan view by layers, or by cross sections or rendered iso-volumes in 
GMS. The site-wide mean was then simply a matter of calculating the arithmetic average of all 
cell mid-points that were defined as “soil” (as opposed to “above ground”).   
 
 R-5.9  Uncertainty.  Kriging standard error estimates are automatically produced for each 
cell at the time the concentration estimate is assigned. They reflect uncertainty in a particular cell 
estimate and cannot be used directly to estimate uncertainty for the site-wide mean, which is the 
standard error term required for a 95% upper confidence limit (95% UCL), i.e., the exposure 
concentration. The standard error for the site-wide mean was conservatively estimated by using 
the kriging error resulting when the variogram model was run on a new grid consisting of one 
large three-dimensional cell encompassing the entire site. The intuitive definition of this error 
term is that it represents the uncertainty implied by using the available 233 spatially correlated 
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sample points to estimate the mean concentration of the entire block of soil containing the 233 
correlated samples. As the site boundaries and especially the topography result in an irregularly 
shaped zone of soil within this large rectangular block, the “block type” of uncertainty results in 
an overestimate for the actual soil subzone within the block. This is because the block uncer-
tainty reflects large regions of “air” that are not properly distinguished from soil, and these re-
gions have no sample data and are relatively far from the nearest sample datum. This method 
was conservative but was considered reasonable for use in the risk assessment. Detailed discus-
sions of the many uncertainty approaches for kriging can be found in Meyers (1997), which fo-
cuses on environmental contamination, and other geostatistical texts (e.g., Goovaerts, 1997). 
Thus, the 95% UCL on the mean was calculated as 
 
 95% UCL = UE + 1.645 KSE 
 
where 
 UE = unbiased estimate of the mean (obtained from the high resolution model)  
 KSE = kriging standard error (conservative estimate) 
 1.645 = the 95th percentile of the standard normal distribution 
 
R-6 Conclusion. 
 
 R-6.1  Although several conservative analysis assumptions were built into the model and 
uncertainty formulation, the site-wide volume-weighted exposure concentration (95% UCL) was 
reduced by 37 to 58% compared to that calculated from the most commonly used non-spatial 
formulas identified in numerous risk assessment guidances (e.g., t-based, Land, bootstrap). The 
reduction in the exposure concentration came from the more rigorous use of spatial correlation 
and soil volume when kriging rather than the classical assumption that all sample points were 
identically distributed, i.e., without spatial correlation. Thus, the lower kriged exposure concen-
tration was important in determining the attainment of risk-based cleanup goals. 
 
 R-6.2  The kriged model contours of the post-treatment spatial distribution allowed the 
visual comparison of the estimated pre- and post-remediation distributions, and were instrumen-
tal in concluding the effectiveness of in situ ozonation for this site.  
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APPENDIX S 
Geochemical Trend Analysis 

 
S-1 Introduction.  An overview of the “geochemical” approach is presented from a statistical 
perspective via illustrations, and existing geochemical guidance (primarily from the Navy) is 
supplemented. The geochemical approach is an effective strategy for distinguishing 
anthropogenic from naturally occurring metal concentrations, particularly when it is used with 
traditional quantitative statistical evaluations. The approach often identifies naturally occurring 
metal concentrations that are erroneously identified as site-related by traditional evaluations (i.e., 
comparisons of study area metal concentrations to background 95% UTLs). The geochemical 
approach can not only be used to determine whether a study area has been impacted by 
anthropogenic metal contamination but can also identify the individual sampling locations that 
are suspected to possess the elevated metal concentrations. 
 
 S-1.1  Although the geochemical approach is typically extremely useful, the limitations 
of the approach should be noted. Its primary disadvantage is that it is subjective because it is 
predominately qualitative. In particular, decision errors are not quantified and well-defined 
criteria for distinguishing native from anthropogenic metal concentrations are not specified. In 
addition, although the approach distinguishes anthropogenic metal contamination from naturally 
occurring concentrations, it does not distinguish site-related contamination from non-site-related 
anthropogenic metal contamination. In other words, elevated contamination relative to 
background identified by the geochemical approach may be consistent with anthropogenic 
background. Statistical comparisons using a background study area would typically be needed to 
distinguish site-related contamination from total background metal concentrations (from 
anthropogenic and non-anthropogenic sources). Lastly, an additional limitation of the approach 
is that it implicitly assumes that, at most, only a portion of the site has been impacted by 
anthropogenic metal releases. This assumption is typically reasonable but can be violated if the 
study area is too small (i.e., is predominately limited to a “hot spot”). 
 
 S-1.2  Geochemical evaluations may be categorized as “association” and “enrichment” 
analyses. Both are qualitative strategies used to distinguish anthropogenic from naturally 
occurring metal concentrations and rely upon the assumption that metal releases from waste 
handling activities impact only a portion of the study area. Geochemical “association” analysis 
primarily uses scatter plots to distinguish anthropogenic from naturally occurring metal 
concentrations. The approach exploits and relies upon the ability to observe correlations between 
different naturally occurring metals, while geochemical “enrichment” analysis primarily uses 
probability plots to accomplish this objective. Typically (for both geochemical approaches), at 
least 20 samples are collected for some environmental medium of interest at the study area (i.e., 
surface soils or groundwater that has been potentially impacted by metal contamination) and the 
samples are analyzed for TAL (target analyte list) metals (i.e., the set of 23 metals listed in the 
Contract Laboratory Program Statement of Work). Because metals such as Al, Mg, Ca, and Fe 
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are major components of naturally occurring minerals in rocks and soils in the earth’s crust, these 
metals are typically considered to be non-site related. 
 
 S-1.3  When geochemical association analyses are done, correlations between suspected 
site-related metals (e.g., Cd, Pb, and Cu) and non-site related metals (e.g., Al, Fe, or Ca) are 
investigated by generating scatter plots. Typically, the concentrations of some potential site-
related metal are plotted on the y-axis and the corresponding concentrations of some non-site-
related metal are plotted on the x-axis. A strong correlation suggests that detected metal 
concentrations are native rather than a result of site-related waste handling activities. Metal 
concentrations that are not consistent with the correlations in the scatter plots appear as 
“anomalies” or “outliers” that are attributed to anthropogenic contamination. When geochemical 
enrichment analysis is performed, probability plots are generated. Native metal concentrations 
give rise to continuous monotonic curves (i.e., straight lines). An abrupt increase in the slope of a 
curve, appearing as an inflection point in the upper portion of the curve, indicates anthropogenic 
contamination. 
 
 S-1.4  The strategies used to select the particular native metals of interest are beyond the 
scope of this document, which focuses upon only the statistical evaluation of the data once the 
metals of interest have been selected. The metals and the correlations of interest will depend on 
the nature of the environmental population being sampled. Native metals concentrations in soils 
and sediment depend on factors such as the nature of the parent rocks and component minerals, 
and organic material content. Metal concentrations tend to be directly proportional to total 
organic carbon and inversely proportional to particle size. Dissolved metal concentrations in 
groundwater tend to be greater at low pH and reducing conditions. It should be noted that metals 
usually exist as anions (negatively charged species) and cations (positively charged species) in 
environmental media such as groundwater, soil, and sediments. For example, metals such as As, 
Sb, Se, V, and Mo tend to form anionic species (i.e., containing oxygen atoms); metals such as 
Ba, Cu, Pb, Ni, and Zn tend to form cations, while certain metals such Cr form either as cationic 
or anionic species. At neutral pH, clays, which typically contain Al, possess strong negative 
surface charges that attract cationic metals such as Cu, Zn, and Pb. Therefore, for soils rich in 
clay or groundwater containing suspended clay particles, Al will often be strongly correlated 
with cationic metals. Similarly, at neutral pH, environmental matrices containing iron oxides and 
iron oxyhydroxides possess positive surface charges that attract anionic metal species. 
 
S-2 Geochemical Association Approach.  To illustrate the geochemical association 
approach, assume that soils at some study area contain significant concentrations of native Fe 
and the area is suspected to have been impacted by site-related Pb contamination. The 
concentration of Pb in each sample is plotted against the corresponding concentration of Fe to 
generate a “Pb-Fe” scatter plot for the study area (i.e., as discussed in Paragraph J-9). When a 
scatter plot is generated for a geochemical evaluation, the x-axis is usually the concentration of 
the non-site-related metal (Fe), but this is merely a convention (e.g., a comparable scatter plot 
may be generated if the y-axis were the concentration of the non-site related metal). Also note 
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that when a scatter plot is produced, the values for the X variable and those for the Y variables are 
not ordered prior to plotting the data, rather a set of paired measurements, (xi, yi), where i = 1, 2, 
…, n (n denotes the number of environmental samples) is plotted. A strong positive correlation 
between naturally occurring concentrations of Fe and Pb (i.e., where the concentration of Pb 
tends to increase as the concentration of Fe increases) would suggest that Pb is not an 
anthropogenic contaminant. Figure S-1 is an example of a Fe-Pb scatter plot. 
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Figure S-1. Scatter plot of Pb and Fe. Copyright 2004 
From "Identifying Metals Contamination In Soil: A Geochemical 
Approach,” Soil & Sediment Contamination, Vol. 13, No. 1, pp. 1–
16, by Myers, J. and K. Thorbjornsen. Reproduced by permission 
of Talyor & Francis Group, LLC. 

 
 S-2.1  The relatively strong linear relationship between Pb and Fe for the points that 
appear as blue diamonds suggests that these samples contain only native concentrations of Pb 
and Fe. Samples containing Pb in excess of naturally occurring concentrations appear as 
“outlying” points (e.g., the three red circles) above the linear trend (the blue diamonds), 
suggesting that these samples contain anthropogenic Pb contamination. 
 
 S-2.2  Two major advantages of the geochemical approach relative to classic statistical 
approaches are immediately apparent. A background study area (and the expense associated with 
doing a separate background study) is not required to identify study area concentrations that are 
elevated relative to native metal concentrations. Furthermore, the approach readily identifies the 
samples (locations) suspected to contain the elevated metal concentrations. Classic statistical 
evaluations do not readily provide this information. (Because classic statistical evaluations rely 
upon the assumption that samples are independent of one another, the presence of a correlation 
or contamination “pattern” would violate this assumption and compromise the validity of the 
evaluation.) For example, a typical statistical approach would entail comparing the mean 
concentration of Pb at the site study area to the mean concentration of Pb at a background study 
area. Although the evaluation may indicate that the mean site Pb concentration is statistically 
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greater than the mean background Pb concentration, the evaluation itself would not (at least 
directly) identify the sampling locations associated the elevated lead concentrations (though a 
geostatistical approach could potentially evaluate contamination that is spatially correlated). 
 
 S-2.3  It should also be noted that, although background data are not required to perform 
geochemical evaluations, background data can be plotted with site data to determine if site 
metals are elevated relative to native concentrations. This is illustrated in Figures S-2 and S-3. 
 
 S-2.4  In Figure S-2, the Cu surface soil samples (blue non-shaded triangles) generally 
plot above the background samples (green circles). Similarly, in Figure S-3, Pb surface soil 
samples (blue non-shaded triangles) plot above the background samples (green circles). This 
suggests that the site has been contaminated by both Pb and Cu. These plots were generated from 
soil samples collected from an artillery firing range, where Cu and Pb are frequently potential 
contaminants of concern. The scatter plots also indicate that Pb and Cu in the site surface soils 
are elevated relative to the subsurface soils, which, given the nature of the site, is consistent with 
the manner in which one would expect site-related contamination to be spatially distributed. 
 
 S-2.5  An additional advantage of the geochemical approach is that multiple scatter plots 
between different metals (i.e., using site or a combination of site and background data) can 
potentially be used to determine whether or not a site has been contaminated by metals. In this 
example, the anthropogenic Cu and Pb contamination identified in the Cu-Fe and Pb-Mn scatter 
plots, respectively, can be further evaluated by generating a scatter plot for Pb and Cu, as shown 
in Figure S-4. The moderate to strong correlation between Cu and Pb for the site surface soil 
samples but the poor correlation between Pb and Cu for the background samples suggests that 
the Cu and Pb are site-related contaminants from a common anthropogenic source. 
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Figure S-2.  Log scale Cu-Fe scatter plots of site and 
background soil samples. Figure provided by J. Myers of Shaw 
Environmental, Inc., Knoxville, TN. 
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Figure S-3. Log scale Pb-Mn scatter plot for site and 
background soil samples. Figure provided by J. Myers of Shaw 
Environmental, Inc., Knoxville, TN. 
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Figure S-4. Log scale Cu-Pb scatter plot of background 
and site soil soils. Figure provided by J. Myers of Shaw 
Environmental, Inc., Knoxville, TN. 

 
 S-2.6  As stated previously, the primary disadvantage of the geochemical approach is that 
it is predominately qualitative and, therefore, subjective. The degree of correlation that is 
required to conclude the study area has not been affected by anthropogenic contamination and 
what constitutes an “outlier” when a correlation is observed is typically is not well defined (i.e., 
quantitatively criteria are not specified). To illustrate, consider the As-Fe scatter plot presented 
below in Figure S-5. 
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 S-2.7  There appears to be a large of amount of dispersion in the scatter plot shown in 
Figure S-5. A qualitative visual evaluation of this plot does not clearly indicate whether or not 
As and Fe are strongly correlated with one another. However, as illustrated in Figure S-6, the 
same scatter plot could potentially be interpreted in a different way: Arsenic concentrations less 
than about 4 mg/kg could be viewed as strongly correlated with Fe (as shown by the red line in 
Figure S-6), and the As concentrations larger than 4 mg/kg (i.e., the set of circled points) could 
be interpreted as anthropogenic contamination. Unlike classical statistical strategies that are used 
to distinguish anthropogenic contamination from background values, decision errors for 
geochemical evaluations are not quantifiable. As geochemical evaluations are subjective, they 
can produce erroneous conclusions and are more vulnerable to challenge (e.g., by regulators) 
than quantitative statistical approaches. 
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Figure S-5.  As-Fe scatter plot with a large amount of 
scatter. Copyright 2004 From "Identifying Metals Contamination In 
Soil: A Geochemical Approach,” Soil & Sediment Contamination, Vol. 
13, No. 1, pp. 1–16, by Myers, J. and K. Thorbjornsen. Reproduced by 
permission of Talyor & Francis Group, LLC.  
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Figure S-6. Misidentified trends for the scatter plot in 
Figure S-5. Copyright 2004 From "Identifying Metals 
Contamination In Soil: A Geochemical Approach,” Soil & Sediment 
Contamination, Vol. 13, No. 1, pp. 1–16, by Myers, J. and K. 
Thorbjornsen. Reproduced by permission of Talyor & Francis Group, 
LLC.  

 
 S-2.8  However, the As results in Figure S-5 are probably naturally occurring. As shown 
in Figure S-7, a scatter plot of As versus the ratio Ln(As/Fe) exhibits a fairly strong linear 
relationship, suggesting that the As is natural. 
 

  

0
1
2
3
4
5
6
7
8
9

10

0.00001 0.0001 0.001 0.01
As/Fe Ratio

Ar
se

ni
c 

(m
g/

kg
)

 
Figure S-7. Scatter plot of As and logarithm of As/Fe 
using the data set plotted in Figure S-5. Copyright 2004 
From "Identifying Metals Contamination In Soil: A Geochemical 
Approach,” Soil & Sediment Contamination, Vol. 13, No. 1, pp. 1–16, 
by Myers, J. and K. Thorbjornsen. Reproduced by permission of Talyor 
& Francis Group, LLC. 
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 S-2.9  The scatter plots presented above were generated using soils data, but similar 
geochemical association analyses may also be conducted for groundwater. Some scatter plots 
using log rather than linear scales for the x- and y-axes are presented below for groundwater data. 
 
 S-2.10  There is a relative good correlation between Al and Fe in Figure S-8, which 
suggests that both metals are non-site-related. The correlation between As and Fe in Figure S-9 
suggests that As is not a site-related contaminant. 
 
 S-2.11  The scatter plots may also be used to examine the relationship between filtered 
and unfiltered samples, as well as between metal concentrations and parameters such as turbidity 
and oxidation-reduction potential (e.g., in single monitoring well over time or for a set of 
monitoring wells). Figure S-10 illustrates the relationship between filtered and unfiltered samples 
analyzed for Cr. There is an apparent linear relationship between the concentration of Cr in 
unfiltered groundwater and the ratio of filtered to unfiltered Cr, which could indicate naturally 
occurring Cr in suspended particles from the surrounding soils. 
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Figure S-8.  Al-Fe log-scale scatter plot for a set of 
groundwater monitoring wells. Figure provided by J. Myers of 
Shaw Environmental, Inc., Knoxville, TN. 
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Figure S-9.  Log-scale As-Fe scatter plot using Fe 
groundwater data for Figure S-8.  Figure provided by J. 
Myers of Shaw Environmental, Inc., Knoxville, TN. 
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Figure S-10.  Log-scale scatter plot of filtered and 
unfiltered groundwater analyzed for Cr.  Figure provided 
by J. Myers of Shaw Environmental, Inc., Knoxville, TN. 

 
S-3 Geochemical Enrichment Analysis.  Geochemical enrichment analysis entails 
constructing quantile plots or normal probably plots (e.g., as discussed in Appendix J). To 
construct a quantile plot, the values of some variable are ordered from smallest to largest and the 
percentage or faction of the values less than or equal to each data point is then calculated. The 
measured values are then plotted on one axis (y-axis) and the corresponding percentages or 
proportions are plotted on the remaining axis x-axis). The approach is so named because the 
measured variable being plotted is called an “enrichment factor.” An enrichment factor is 
calculated from an equation of the form: 
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 RockParentSiteXM CCY μ/)/(=′  . 
 
 S-3.1  The quantity (CM /CX)Site is the concentration of some site related metal (e.g., Cr) 
CM divided or “normalized” by the corresponding concentration of some non-site-related metal 
(e.g., Al) CX. The term μParent Rock is the true mean concentration of (CM /CX) concentration in the 
“parent rock” (i.e., the rock from which the site soil was geologically derived) and is typically 
obtained from the literature. However, as this term is simply a constant, it does not alter the 
shape of the quantile plots and is unnecessary for their evaluation. Quantile plots may be 
generated using the ratios  
 
 SiteXM CCY )/(=  

 
or the logarithms of these ratios  
 
 { }Ln( ) Ln ( / )M X SiteY C C=  . 
 
 S-3.2  The quantile plot is evaluated for trends indicative of naturally occurring metal 
concentrations and “deviations” that indicate anthropogenic contamination. Because 
environmental data are frequently normal or lognormal, it is usually convenient to construct 
normal probably plots for Y or Ln(Y) (i.e., the values of (Cm /Cx)Site are plotted against the 
corresponding quantiles of a standard normal distribution or their associated probabilities). For 
normally distributed data, “deviations” appear as “breaks” in a straight line. This is illustrated in 
Figure S-11. 
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Figure S-11. Probability plot of Y = (CM /CX)Site when a 
portion of the study area has been heavily impacted by 
anthropogenic contamination. 
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 S-3.3  The plot is predominately linear from about 700 to 1300, where there appears to be 
either a “break” or inflection point in the graph. After this region, the graph is essentially linear 
from about 1800 to 2200. The linear portion of the plot from 700 to 1300 would be attributed to 
native background concentrations and the values greater than about 1300 would be attributed to 
anthropogenic contamination. It should also be noted that the probably plots may contain more 
than one inflection point. Multiple populations (i.e., differences in concentration between 
background soils, surface soils, and subsurface soils) will potentially give rise to multiple 
inflection points. Ideally, the total number of inflection points plus one will be equal the number 
of different populations. 
 
 S-3.4  There are two apparent inflection points for the probability plot in Figure S-12 
(one near 120 and one near 180), which suggests that there are three distinct populations. For 
example, there may be a background data set and two different concentration regions for site-
related waste handling activities, or there may be two distinct background data sets and one data 
set for sampling locations impacted by anthropogenic contamination. However, the identification 
of the background “trend” and the “deviations” are subjective components of the evaluation. The 
value at which the “break” or inflection point occurs cannot be precisely determined, and 
accuracy decreases as the variability increases and the average native concentrations approaches 
the average concentrations of anthropogenic contamination. 
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Figure S-12. Probability plot of Y =(CM/CX)Site for three 
different populations. 

 
 S-3.5  Two different known data sets were actually combined to produce the plot in 
Figure S-13. The “background data set” consisted of 100 points from a normally distributed 
population with a mean of 1000 and standard deviation of 100. The second set, which represents 
the anthropogenic contamination, consisted of 10 points from a normally distributed population 
with a mean of 2000 and a standard deviation of 100. As the difference between the means is 
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large, an inflection point can be easily obtained from the probability plot in Figure S-13. 
However, a very different probability plot would result if the means of the two data sets were 
more similar. Consider the probability plot that would have been produced by combining the 
following data sets: i) a “background” data set, consisting of 100 points from a normally 
distributed “background” population with a mean of 1000 and standard deviation of 200, and ii) 
a “site” data set, consisting of 10 points (representing the anthropogenic contamination) from a 
normally distributed population with mean of 1300 and standard deviation of 200. 
 
 S-3.5  An inflection point is not apparent in the probably plot though the plot contains 10 
data points from a population with a mean that is significantly greater than the background mean. 
Descriptive statistics for the two data sets are presented below: 
 

Variable Mean Std. Dev. Minimum Maximum 
YBackground 1004.3 212.2 548.9 1592.3 

YSite 1306.6 211.6 837.9 1512.9 
 
 S-3.6  Assuming that the background areas are known, a two-sample Student’s t-test 
could show that there is a significant difference between the means for the “background” and 
“site” data sets at well over the 95% level of confidence. Unlike the geochemical approach, this 
test would conclude that the “site” is elevated relative to “background.” As in the geochemical 
association approach, the qualitative nature of enrichment factor approach can produce decision 
errors. Geochemical evaluations should typically be done with quantitative statistical evaluations 
to determine whether or not a study area has been impacted by metal contamination. 
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Figure S-13. Probability plot of Y =(CM/CX)Site when a 
portion of the study area has been slightly impacted by 
anthropogenic contamination. 
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S-4 Recommendation for performing Geochemical Evaluations.  Relatively detailed 
guidance for evaluating background concentrations using classic statistical as well as 
geochemical evaluations is available from the Navy for soil, sediment, and groundwater at the 
following web link: 
 

http://web.ead.anl.gov/ecorisk/related/ 
 
However, some modifications to the Navy’s approach are recommended as listed below. 
 
 S-4.1  In the Navy guidance, Ordinary Least Squares (OLS) (linear regression) is used to 
evaluate geochemical relationships (e.g., correlation), outliers that present contamination, and is 
used to estimate background concentrations. It is recommended that OLS calculations not be 
performed. The underlying assumptions required to perform linear regression of typically 
violated (as discussed in Paragraph P-4 ). 
 
 S-4.1.1  As discussed in Appendix P, when a regression line of the form Y = b1 X + b0  is 
calculated, it is being assumed that X is an “independent” variable that possesses negligible 
uncertainty relative to the “dependent” variable Y. A change in X produces “explained” variation 
in Y; the “unexplained” variation is attributable to random error associated with the measurement 
of Y alone. However, this assumption is routinely violated for geochemical evaluations. In the 
Navy’s guidance, non-site-related metals such as Al and Fe are plotted on the x-axis and 
potential site-related metals are plotted on the y-axis, but this is merely a convention. The 
variables X and Y are both measured quantities possessing comparable levels of uncertainty. In 
this context, there is no a prior justification for treating the two variables differently. 
Furthermore, other underlying assumptions required for regression fits are often (but not 
necessarily) violated (e.g., the residuals must be normally distributed and the variance cannot be 
a function of X or Y). 
 
 S-4.1.2  The violation of the underlying assumptions required to calculate the regression 
lines can produce erroneous conclusions. For example, when regression lines are calculated, the 
Navy guidance quantifies their certainty to calculate predication intervals, which are used to 
identify outliers indicative of anthropogenic contamination. (Points that lie outside the prediction 
intervals are suspected to be elevated relative to native concentrations.) However, when the 
assumptions required for the regression lines are violated, the prediction intervals will not 
necessary be valid, which may result in incorrect decisions. 
 
 S-4.2  Geochemical evaluations should focus (at least initially) on correlation rather than 
OLS regression. A correlation coefficient is a measure of the degree of association between two 
variables. Unlike regression, it does not require a “dependent” and “independent” variable. Three 
common measures of correlation are Pearson’s r, Kendal’s tau, and Spearman’s rho (refer to 
Appendix O). However, Pearson’s r is recommended only to screen the results for correlations 
(e.g., to generate the correlation matrix in Table 3-1 of the Navy’s soil guidance). 
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 S-4.2.1  Pearson’s r measures only linear associations; is not appropriate when the data 
are not normal (a bivariate normal distribution is actually required), and is not invariant under 
logarithm transformations (e.g., Pearson’s r calculated for an X-Y scatter plot will differ from 
that calculated for a Ln(X)-Ln(Y) scatter plot). Furthermore, it is not appropriate when a 
significant number of non-detects are reported (i.e., not robust to data censoring). In contrast, 
Kendal’s tau and Spearman’s rho are non-parametric correlation coefficients (i.e., normality is 
not required) that measure the degree of association for monotonic (linear and non-linear) 
relationships. They are invariant with respect to monotonic transformation, such as logarithm 
transformation, and are relatively robust to data censoring. 
 
 S-4.2.2  A statistical hypothesis test should be performed for a correlation coefficient 
calculated for two sets of measured variables (metals), X and Y, to determine if it is statistically 
different from zero at the 95 or 99% level of confidence. If the correlation coefficient is not 
statistically different from zero, there is insufficient evidence to conclude that two variables 
(metals) are correlated with one another. If the coefficient is statistically different from zero, then 
we may conclude that some degree of associate exists. Unfortunately, there is no quantitative 
criterion for the degree of association. Two metals may exhibit a statistically significant 
correlation, but the degree of correlation may be so weak that it is not of practical importance. 
However, some “rule-of-thumb” guidance for the degree of correlation is presented in Paragraph 
O-2. It is recommended that at least a weak to moderate relationship be required for geochemical 
associations. 

 
 S-4.2.3  When non-detects are reported (especially when the non-detects are reported at 
different detection limits), it is recommended that correlation be evaluated using Kendal’s τ-b: 
Kendal’s τ-b would typically be calculated using statistical software and is essentially Kendal’s 
tau adjusted for tied values (see Appendix O).  

 
 S-4.3  A Kendal-Theil or “line of organic correlation” (LOC) should be plotted with 
scatter plots to help identify linear relationships (refer to Appendix P). A Kendal-Theil line 
passes through the medians of both variables X and Y that are linearly related. The slope of the 
Kendal-Theil line is not significantly different from zero if Kendal’s tau is not significantly 
different from zero. Unlike the least-squares regression line, the Kendal-Theil line is non-
parametric and is relatively robust to outliers and censored data. The calculation of a LOC 
constitutes an alternative parametric approach to examine a linear relationship that would be 
more appropriate than OLS. A LOC is appropriate to evaluate linear relationships for the 
geochemical approach because the uncertainty associated with both sets of metal measurements 
is taken into account. The LOC is calculated in a similar manner as OLS lines, but the X and Y 
variables are treated in the same manner (i.e., the approach does not require “dependent” and 
“independent” variables). The same LOC will be obtained whether Y is plotted against X or X is 
plotted against Y. 
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 S-4.4  The Navy guidance recommends that only Ln(X)-Ln(Y) scatter plots be generated. 
However, X-Y (or Ln(X)-Y, and X-Ln(Y)) scatter plots can also be generated and may be useful 
for identifying associations between variables, as shown by the X-Y scatter plot in Figure S-1. 
Associations can also be identified by generating scatter plots of the form: “X versus X/Y” (e.g., 
where X denotes the concentration of a potential site-related metal and X/Y is the ratio of the 
metal to a non-site-related metal concentrations). A linear relationship between X and X/Y 
implies that a linear relationship will be obtained when Y is plotted against Ln(X). (If Y is 
proportional to Ln(X), then the first derivative dY/dX is proportional to 1/X and dX/dY is 
proportional to X.) 
 
 S-4.5  The Navy’s groundwater guidance document does not promote the geochemical 
evaluations presented for soils and sediments in the Navy’s soil and sediment background 
guidance documents. The geochemical evaluations for soils and sediments can substantively be 
applied to groundwater, as shown by groundwater scatter plots presented above. 
 
 S-4.6  For the geochemical enrichment approach, it is recommended that both the ratios 
(Cm/Cx)Site and the logarithms of the ratios be plotted to identify trends characteristic of 
anthropogenic contamination. The normalization factor (Cm/Cx)Parent Rock is not required and may 
be omitted if convenient to do so. 
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Figure S-14. Scatter plot for censored data. 

 
 S-4.7  Censored data (non-detects) should be included in scatter plots for the geochemical 
association analyses when only one of the variables is censored. The uncensored variable (which 
would typically be a non-site-related metal such as Fe or Al) should be plotted along the x-axis 
and the censored variable (the suspected site-related metal) should be plotted on the y-axis. To 
illustrate, a Pb and Al scatter plot is presented in Figure S-14 for a small data set. The black 
circles represent detected results and the red squares are the reporting limits for non-detects. The 
dashed lines indicate that the actual Pb concentration lies somewhere between the reporting limit 
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and the zero. One the basis of the detected results alone, there appears to be a strong correlation 
between Pb and Al. However, the correlations appears to be rather weak when the non-detects 
are also plotted 
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GLOSSARY 
 
Acronym Definition 
 
%R Percent recovery 
2-D Two-dimensional 
3-D Three-dimensional 
ACLs Alternate concentration limits 
ANOVA Analysis of variance 
ARARs Applicable or relevant and appropriate requirements 
ASAP Adaptive Sampling and Analysis Program 
ASTM American Society for Testing and Materials 
CERCLA Comprehensive Emergency Response, Compensation, and Liability Act 
CFR Code of Federal Regulations 
CI Confidence interval 
COPCs Contaminants of potential concern 
CTE Central tendency exposure 
CUSUM Cumulative summation 
CV Coefficient of variation 
DCA Dichloroethane 
DDT Dichloro-diphenyl-trichloroethene 
DEFT Decision error feasibility trial 
df Degrees of freedom 
DLs Detection limits 
DO Dissolved oxygen 
DQI Data quality indicator 
DQO Data quality objectives 
EPA U.S. Environmental Protection Agency 
EPCs Exposure point concentrations 
EQL Estimated quantitation limit 
FSP Field sampling plan 
Geo-EAS Geostatistical Environmental Assessment Software 
GIS Geographic Information System 
GPS Global Positioning System 
HRS Hazard ranking system 
HTRW Hazardous, toxic, and radioactive waste 
IAA Immunoassay analysis 
ICV Initial calibration verification 
IDL Instrument detection limit 
IDW Inverse distance weighted 
IQR Interquartile range 
K-S Kolmogorov-Smirnov 
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Lc Critical level 
LCL Lower confidence limit 
LD Limit of detection 
LS Least squares 
LSD Least significant difference 
MCLs Maximum contaminant levels 
MDL Method detection limit 
MQL Method quantitation limit 
MQO Measurement quality objective 
MRL Method reporting limit 
MSDS Material safety data sheet 
MTCA Model Toxics Control Act 
ND Not detected 
NPDES National Pollutant Discharge Elimination System 
NPL National Priorities List 
OC Organochlorine 
PA Preliminary Assessment 
PAHs Polynuclear aromatic hydrocarbons 
PARCC Precision, accuracy, representativeness, comparability, and completeness 
PCBs Polychlorinated biphenyls 
PCD Project controlling document 
PCE Tetrachloroethene 
PDM Percent decision match 
PE Performance evaluation 
PQL Practical quantitation limit 
PRGs Preliminary remediation goals 
QA Quality assurance 
QC Quality control 
QL Quantitation limit 
RA  Remedial Action 
RAGS Risk Assessment Guidance for Superfund 
RBCs Risk-based concentrations 
RCRA Resource Conservation and Recovery Act 
RD Remedial Design 
Redox Oxidation-reduction potential 
RFI RCRA Facility Investigation 
RI/FS Remedial Investigation/Feasibility Study 
RL Reporting limit 
RME Reasonable maximum exposure 
RPD Relative percent difference 
RPM Remedial project manager 
RSD Relative standard deviation 
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RT Regulatory threshold 
SAD Sum of absolute deviations 
SAPs Sampling and analysis plans 
SI Site Investigation 
SQL Sample quantitation limit 
SSS Sample sum of sequences 
TCE Trichloroethene 
TCLP Toxicity characteristic leaching procedure 
TIN Triangular irregular network 
TNT Trinitrotoluene 
TPH Total petroleum hydrocarbons 
TPP Technical project planning 
TSCA Toxic Substance Control Act 
UCL Upper confidence limit 
USACE U.S. Army Corps of Engineers 
UTL Upper tolerance limit 
VOCs Volatile organic compounds 
WLS Weighted least squares 
 
Symbols and Notations 
 
Symbol Description 

α  Significance level of a statistical test 

ji,∀  All i and j 

0b  Intercept estimate for linear regression 

1b  Slope estimate for linear regression 

β−1  Power of a statistical test 

0β  True intercept of a regression equation 

1β  True slope of a regression equation 

C Target contaminant concentration or fixed-threshold value 

CV Coefficient of variation 

ie  Sample residual 

ε  Population residual 

qkpF ,,  Critical value of the F distribution with k numerator degrees of freedom 
and q denominator degrees of freedom where 100p% of the distribution 
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Symbol Description 

lies below this value 

γ  Population correlation coefficient 

( )hγ  Semivariogram function 

IQR  Sample interquartile range 

0H  Null hypothesis of a statistical test 

AH  Alternative hypothesis of a statistical test 

Ln Natural logarithm 

Log Base ten logarithm 

μ  Population mean 

1μ̂  Minimum variance unbiased estimate (MVUE) of the population mean of 
a lognormal distribution 

n  Number of observations in a sample 

ν  Degrees of freedom (df) 

p  Sample proportion or probability of an event for the binomial distribution 

P  Population proportion of a random variable 

( )XP  Probability density function of random variable X 

( )ba XXXP ≤≤  Probability that the random variable X lies between Xa and Xb 

r  Pearson’s sample correlation coefficient 

R  Sample range 

( )ixR  Rank of the ith observation with respect to the other observations 

ρ  Spearman’s rank order sample correlation coefficient 

s  Sample standard deviation 
2s  Sample variance 

σ  Population standard deviation 
2σ  Population variance 

ν,pt  Critical value of the t distribution with ν  degrees of freedom where 
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Symbol Description 

100p% of the distribution lies below this value 

τ  Kendall’s rank order sample correlation coefficient 

Θ  A population parameter 

θ  A population parameter 

iw  Number of ties in the ith group or ith weighting factor 

x  Sample arithmetic mean 

x~  Sample median 

ixr  A vector ( )imii xxx ,,, 21 K  

nxxx ,,, 21 K  A set of n observations, a sample 

( ) ( ) ( )nxxx ,,, 21 K  A set of n observations ordered from least to greatest 
2

,νχ p  Critical value of the chi-squared distribution with ν  degrees of freedom 
where 100p% of the distribution lies below this value 

px  100pth percentile or p quantile of a sample 

pX  100pth percentile or p quantile of random variable X 

.,, etcYX  Random variables representing populations 

pZ  Critical value of the standard normal distribution where 100p% of the 
distribution lies below this value 

 


